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Abstract

Large scale parallel simulations are fundamental tools forengineers and scientists. Con-

sequently, it is critical to develop both programming models and tools that enhance devel-

opment time productivity, enable harnessing of massively-parallel systems, and to guide

the diagnosis of poorly scaling programs. This thesis addresses this challenge in two

ways. First, we show that Co-array Fortran (CAF), a shared-memory parallel program-

ming model, can be used to write scientific codes that exhibithigh performance on modern

parallel systems. Second, we describe a novel technique foranalyzing parallel program

performance and identifying scalability bottlenecks, andapply it across multiple program-

ming models.

Although the message passing parallel programming model provides both portability

and high performance, it is cumbersome to program. CAF easesthis burden by providing

a partitioned global address space, but has before now only been implemented on shared-

memory machines. To significantly broaden CAF’s appeal, we show that CAF programs

can deliver high-performance on commodity cluster platforms. We designed and imple-

mentedcafc, the first multiplatform CAF compiler, which transforms CAFprograms

into Fortran 90 plus communication primitives. Our studiesshow that CAF applications

matched or exceeded the performance of the corresponding message passing programs.

For good node performance,cafc employs an automatic transformation called procedure

splitting; for high performance on clusters, we vectorize and aggregate communication at

the source level. We extend CAF with hints enabling overlap of communication with com-



putation. Overall, our experiments show that CAF versions of NAS benchmarks match the

performance of their MPI counterparts on multiple platforms.

The increasing scale of parallel systems makes it critical to pinpoint and fix scalability

bottlenecks in parallel programs. To automatize this process, we present a novel analysis

technique that uses parallel scaling expectations to compute scalability scores for calling

contexts, and then guides an analyst to hot spots using an interactive viewer. Our technique

is general and may thus be applied to several programming models; in particular, we used

it to analyze CAF and MPI codes, among others. Applying our analysis to CAF programs

highlighted the need for language-level collective operations which we both propose and

evaluate.
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Chapter 1

Introduction

Large scale parallel simulations are an essential tool for scientists and engineers. Providing

scientific codes developers with parallel programming models that enable them to be pro-

ductive and to effectively harness the power of current massively parallel systems has been

a long standing challenge for the computer scientists in thehigh-performance scientific

community. It is a hard reality that often parallel applications do not achieve the desired

scalability, and programmers spend considerable effort tuning the applications to achieve

high-performance. To direct and prioritize the optimization effort, it is important to have

tools that enable programmers to quickly diagnose and find the parts of their codes that do

not scale according to their expectations.

Recently, it has become clear that increasing processor clock frequency to build faster

computers has reached fundamental physical barriers due toexcessive power consumption

and heat dissipation. Major computer vendors are thereforebuilding multicore chips to

increase the performance of computers for next generation designs of consumer market

processors [18,51,121,132]. As a result, parallel computing is moving into a high-profile,

mainstream role, and the delivery of effective parallel programming models is a high pri-

ority task.

The desirable features for a parallel programming model are: i) ease of use, so users are

productive; ii)expressiveness, so programmers can code a wide range of algorithms; iii)

high-performance, so parallel codes utilize efficiently the capabilities of aparallel system

of choice, and iv)performance portability, so programmers can write their code once and

achieve good performance on the widest possible range of parallel architectures. Existing

programming models, such as Message Passing Interface (MPI) [97], High-Performance
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Fortran (HPF) [128], and OpenMP [133] have various drawbacks.

MPI is a library-based parallel programming model that relies on message passing com-

munication. It is widely portable, and supported on practically every architecture of interest

for parallel computing. Most large scale parallel codes arewritten using MPI, which has

become thede factostandard for parallel computing. MPI 1.1 uses atwo-sided(send and

receive) communication model to communicate data between processes. With a two-sided

communication model, both the sender and receiver explicitly participate in a communi-

cation event. As a consequence, both sender and receiver temporarily set aside their com-

putation to communicate data. Note that having two processes complete a point-to-point

communication explicitly synchronizes the sender and receiver. Years of experience with

MPI have shown that while it enables achieving performance,it does so at a productivity

cost. Writing MPI codes is difficult, error prone, and it demands that programmers select

and employ the proper communication primitives to achieve high performance.

Language-based programming models offer an alternative tolibrary-based program-

ming models. In particular, compilers for parallel programming languages have an op-

portunity to deliver portable performance. HPF relies exclusively on capable compilers to

generate efficient code, and a user has little control over the final performance of a HPF

program. As of this writing, HPF has not delivered high performance for a wide range of

codes. OpenMP enables a user to develop quickly a parallel application by specifying loop-

and region-level parallelism; however, since users cannotspecify affinity between data and

processors, OpenMP programs have difficulties in scaling tolarge hardware shared memory

systems. Also, OpenMP codes do not yield scalable performance on distributed memory

systems.

Partitioned Global Address Space (PGAS) languages, such asCo-Array Fortran [155],

Unified Parallel C [45], and Titanium [198], offers a pragmatic alternative to the HPF

and OpenMP language models. They enable scientific programmers to write performance

portable and scalable parallel codes using available compiler technology, whereas HPF and

OpenMP require significant compiler technology improvements to enable developers to
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achieve similar scalability and performance portability.The PGAS languages offer a par-

titioned global space view, with two-levels of memory:local andremote. Communication

and synchronization are part of the language, and thereforeare amenable to compiler opti-

mization. Users retain control over performance-criticaldecisions such as data distribution

and computation and communication placement.

In this thesis we present our experiences with Co-Array Fortran (CAF). CAF provides

a SPMD programming model that consists of a set of parallel extensions to Fortran 95. The

central concept of CAF is theco-array. At the language level, co-arrays are declared as reg-

ular Fortran 95 arrays, with a bracket notation at the end, asshown in Figure 1.1. The effect

is that all process images contain an instance of the co-array; the co-array instance present

on a process image is denoted the “local part” of the co-arrayfor that process image, while

the remaining instances are “remote co-array parts.” Userscan access both local and remote

co-array memory by using subscripted references. One can express bulk communication at

the source level by using Fortran 95 array section references. CAF usesone-sided commu-

nication(PUT or GET) to access remote data. When using one-sided communication, one

process image specifies both the source and the destination of communicated data. From

the programmer’s perspective, the other process image is not aware of the communication.

Thus, the one-sided model cleanly separates data movement from synchronization; this can

be particularly useful for simplifying the coding of irregular applications.

Tuning of parallel applications is an important step on the road towards high-performance

and scalability. To help users efficiently diagnose their scaling impediments, we describe

and evaluate a novel scaling analysis technique that automatically quantifies how much

calling contexts deviate from their expected scalability and that uses an interactive viewer

to efficiently guide a user to scaling hot spots in the code. Wedemonstrate that our tech-

nique is effective when applied across multiple programming models, to a wide range of

codes, and that it determines different causes of scalability problems.
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integer a(10,20)[N]

a(10,20) a(10,20) a(10,20)

Process 1 Process 2 Process N

Figure 1.1: Graphical representation of a co-array: every image has an instance of the

array.

1.1 The Co-Array Fortran Programming Model

Co-array Fortran supports SPMD parallel programming through a small set of language

extensions to Fortran 95. An executing CAF program consistsof a static collection of

asynchronous process images. Similar to MPI, CAF programs explicitly distribute data and

computation. However, CAF belongs to the family of Global Address Space programming

languages and provides the abstraction of globally accessible memory for both distributed

and shared memory architectures.

CAF supports distributed data using a natural extension to Fortran 95 syntax. For ex-

ample, the declaration presented and graphically represented in Figure 1.1 creates a shared

co-arraya with 10 × 20 integers local to each process image. Dimensions inside square

brackets are called co-dimensions. Co-arrays may be declared for user-defined types as

well as primitive types. A local section of a co-array may be asingleton instance of a

type rather than an array of type instances. Co-arrays can bestatic objects, such as COM-

MON or SAVE variables, or can be declared as ALLOCATABLE variables and allocated

and deallocated dynamically during program execution, using collective calls. Co-arrays of
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user-defined types may contain allocatable components, which can be allocated at runtime

independently by each process image. Finally, co-array objects can be passed as procedure

arguments.

Instead of explicitly coding message exchanges to access data belonging to other pro-

cesses, a CAF program can directly reference non-local values using an extension to the

Fortran 95 syntax for subscripted references. For instance, processp can read the first

column of co-arraya from processp+1 referencinga(:,1)[p+1].

CAF has several synchronization primitives.sync all implements a synchronous

barrier across all images;sync team is used for barrier-style synchronization among

dynamically-formedteamsof two or more processes; andsync memory implements a

local memory fence and ensures the consistency of a process image’s memory by complet-

ing all of the outstanding communication requests issued bythis image.

Since both remote data access and synchronization are language primitives in CAF,

communication and synchronization are amenable to compiler-based optimization. In con-

trast, communication in MPI programs is expressed in a more detailed form, which makes

effective compiler transformations much more difficult.

A more complete description of the CAF language can be found in [154,156].

1.2 Thesis Statement

Co-array Fortran codes can deliver high performance and scalability comparable to that

of hand-tuned message-passing codes across a broad range ofarchitectures. When CAF

programs or other SPMD parallel codes do not achieve the desired performance and scal-

ability, we can automatically diagnose impediments to their scalability.

1.3 Joint Contributions

Before this work, CAF was implemented only on Cray T3E and X1 systems. These ma-

chines support a global shared address space in hardware andprovide efficient vector prim-
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itives for remote memory accesses. For wide acceptance, CAFshould ideally be imple-

mented on a wide range of machines, including clusters that lack hardware support for a

global address space. One could envision a user developing and testing a program on a

multicore laptop, then deploying and running it on the largest parallel machine of choice.

In joint work with Yuri Dotsenko at Rice University, we implementedcafc, the first mul-

tiplatform, open source CAF compiler, as a source-to-source translation system. We re-

fined the CAF programming model to enable users to write performance portable codes,

To demonstrate that CAF applications can achieve scalability and high-performance on a

wide range of systems, we developed CAF codes, determined key optimizations necessary

to achieve high-performance, and showed that the resultingcodes matched the performance

their of hand-tuned MPI counterparts.

cafc transforms CAF sources into Fortran 95 augmented with communication code,

using a near-production-quality front-end Open64/SL [159]. We implemented thecafc

runtime on top of one-sided communication libraries such asARMCI [150] and GAS-

Net [33].cafc is capable of mapping CAF onto clusters that lack a shared memory fabric.

CAF is not yet a language standard. Our goal forcafc was to support sufficient CAF

features so that users can write nontrivial and efficient parallel codes. Incafc we im-

plemented declarations of COMMON, SAVE, ALLOCATABLE and parameter co-arrays,

declarations of co-arrays of primitive and user-defined types with allocatable components,

local and remote co-array accesses, and a subset of CAF intrinsics.

The original CAF programming model was implemented on Cray’s systems with tightly-

coupled hardware support for global address space. Architectural assumptions that came

from these systems made their way into the programming model. To enable CAF pro-

grammers to write performance portable codes, we refined theCAF model by relaxing

the requirement that each procedure call implies a fence — effectively ensuring that all

communication issued before the procedure call completed —since it would limit the po-

tential overlap of communication with computation. The CAFmodel initially contained

only barrier synchronization, among all processes or amonggroups of processes. We ex-
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tended the model with the point-to-point synchronization primitives sync notify and

sync wait.

We demonstrated that CAF can match or exceed MPI performancefor codes such as

the NAS MG, CG, BT, SP and LU [24], the Sweep3D [6] neutron transport code, and

the LBMHD kernel [157], on both cluster and shared memory architectures. This is an

important scientific result, because the previous implementation of CAF enabled achieving

high performance only on Cray global address space systems.

Sincecafc performs source-to-source translation, to achieveefficient node perfor-

manceit must generate code amenable to backend compiler analysisand optimization.

For efficient communication,cafc relies on the underlying communication library (e.g.

ARMCI or GASNet) to allocate data, separate from the memory managed by the For-

tran 95 runtime system. Thecafc-generated code uses Fortran 95 pointers to access local

co-array data. This might lead backend compilers to make overly conservative assump-

tions regarding pointer aliasing and and inhibit importantloop optimizations. To address

this problem, we implemented an automatic transformation that we called procedure split-

ting [73]. If a CAF procedure performs local accesses to SAVEand COMMON co-arrays,

then procedure splitting converts the procedure into an outer and inner pair of subroutines.

The outer one passes the SAVE and COMMON co-arrays that are referenced as argument

co-arrays to the inner subroutine, together with all the original arguments of the initial pro-

cedure. The inner subroutine performs the same computationas the original procedure, but

with all the SAVE and COMMON co-array references converted into argument co-arrays.

cafc transforms argument co-arrays into dummy array arguments.The overall effect for

thecafc-generated code is transforming all the local co-array accesses Fortran 95 pointer

references into array argument references. This conveys toa backend compiler the lack

of aliasing between co-arrays, their memory contiguity andtheir dimensionality. We also

evaluated multiple co-array representations [74].

Communication performanceincreases with communication granularity. For our CAF

codes, we manually applied communication vectorization, communication packing and
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aggregation at the source level [56, 73]. For asynchrony tolerance, we introduced and im-

plemented extensions to the CAF language that enable use of non-blocking communication

primitives.

To improvesynchronization performance, we proposed and evaluated synchronization

strength reduction, a source-level transformation replacing expensive barrier synchroniza-

tion with lower-cost notify and wait primitives and showed its importance for both regular

and irregular parallel codes. For producer-consumer communication patterns we discov-

ered that insufficient buffer storage led to additional synchronization latency exposed on

the execution critical path, which limited parallel performance. We showed that by us-

ing multiple communication buffers at source level we were able to match or exceed the

performance of hand-tuned MPI versions for wavefront applications and line sweep com-

putations [57,73].

1.4 New Contributions

To improve the performance and scalability of parallel codes, it is crucial to correctly iden-

tify impediments to scalability. To enhance development productivity, it is desirable to

pinpoint bottlenecks automatically and focus a programmer’s attention on the parts of the

code that are most responsible for loss of scalability. To address this need, we developed an

automatic method of pinpointing and quantifying scalability impediments in parallel codes

by determining where codes diverge from a user’s expectations.

In general, users have well-defined performance expectations for their codes. For exam-

ple, when attempting strong scaling of a parallel program, users expect that since the prob-

lem size and the work performed remain constant, the total execution time will decrease

proportionally with the number of processors on which the parallel code is executed. When

attempting weak scaling of a parallel program, users expectthat since the problem size per

processor remains constant and the number of processors increases, the overall execution

time will remain constant. For sequential applications, users expect a certain time cost

with respect to the input size; for example, a compiler writer might expect that an analysis
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phase takes time linear with respect to the program size. In practice, it is often the case that

programs do not perform according to the expectations of their developers; the challenge

is then to identify which program components deviate the most from the expected behav-

ior, in order to direct and prioritize the optimization efforts. We present and demonstrate

the effectiveness of our analysis method for both strong scaling and weak scaling parallel

programs.

Our analysis proceeds as follows. Once the expectations areformally defined, the pro-

gram under analysis is executed on different number of processors. We use a profiling tool

that collects calling context trees (CCTs) [19] for unmodified, optimized binaries,. In a

CCT, each node corresponds to a procedure, such that the pathfrom the root to each node

reflects an actual call path during the program execution. The nodes of the CCT are an-

notated with the number of samples that were collected by theprofiler in the procedure

corresponding to that node. After running the parallel program and collecting the CCT

for each execution, we analyze corresponding nodes in the CCT for different number of

processors. Since our expectation is well-defined (e.g. linear scaling of running time or

constant execution time), we can compute automatically howmuch each node deviates

from our ideal scaling annotations. We denote this deviation excess work, and we normal-

ize it by dividing by the total execution time for the parallel program; the resulting metric

is denotedrelative excess work. We compute this metric for bothinclusiveandexclusive

costs; the exclusive costs represent the time spent within aparticular procedure, while the

inclusive costs correspond to the sum of the exclusive costsfor that procedure and for all

the routines called directly or indirectly by that procedure. Having metrics for both of these

costs enables us to determine if the lack of scalability for afunction’s inclusive costs is due

to inefficient work performed in that routine or to calls to routines with poor scaling. After

computing this metric for all the nodes in the CCT, we use an interactive viewer to display

the annotated CCT, sorting the nodes based on their value forthe relative excess work. The

viewer also displays the source code associated with the CCTnodes. Thus, the interactive

viewer enables a user to quickly identify and navigate to thescaling trouble spots in the
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code.

To validate the scaling analysis method, we used it to analyze the scalability of MPI,

CAF, and UPC codes. The results highlighted the need for a non-blocking implementa-

tion of synchronization primitives for CAF, for language orlibrary support of collective

operations in both CAF and UPC, and for aggregation of collective calls in MPI codes.

We demonstrated the power of our scaling analysis method by diagnosing scalability bot-

tlenecks in multiple programming models and for diverse causes including non-scalable

computation, inefficient use of well-implemented primitives, and inefficient implementa-

tion of other primitives.

Using lessons learned from the scalability analysis, we explored extending the CAF

language with collective operations on groups of processors, including user-defined re-

duction operations on user-defined types. We designed an implementation strategy that

leverages MPI collective operations and evaluated language-level collectives using several

benchmarks.

Vectorization is an essential transformation for achieving communication granularity.

We designed and proved the correctness of an algorithm for compiler-directed, dependence-

based communication vectorization of CAF codes.

When scaling CAF to thousands of processors, it is importantto have synchronization

primitives that can be implemented efficiently, in terms of both time and space cost. The

current CAF implementation of point-to-point synchronization primitives is not space ef-

ficient. To address this, we explored an extension of the CAF synchronization mechanism

with eventcounts, which offer the same expressiveness and ease of use as the point-to-point

primitives, but require less space.

1.5 Thesis Overview

This thesis is structured as follows. Chapter 2 describes the relationship to prior work.

Chapter 3 presents the Co-Array Fortran language and our extensions, as well as the par-

allel benchmarks we used to evaluate the performance of CAF codes. Chapter 4 describes
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the implementation strategy forcafc. Chapter 5 presents automatic and manual opti-

mizations for improving the performance of local co-array accesses and of communica-

tion. Chapter 6 discusses CAF implementations of the NAS benchmarks [24] BT, CG,

SP and LU and evaluates the impact of optimizations on scalarand parallel performance.

Chapter 7 presents an evaluation of the impact of local performance and communication

optimizations for UPC versions of the NAS benchmarks BT and CG. Chapter 8 uses a

2kr full factorial design [123] to evaluate the impact of vectorization, aggregation, non

blocking communication and synchronization strength reduction on the performance of

the LBMHD benchmark. Chapter 9 explores space-efficient synchronization extensions to

CAF. In chapter 10, we discuss the CAF memory model, sketch a strategy for performing

dependence analysis on Co-Array Fortran codes, and describe a dependence-based algo-

rithm for automatic communication vectorization of CAF codes. Chapter 11 describes our

scaling analysis techniques and their validation through experiments with CAF, UPC, and

MPI codes. Chapter 12 summarizes our contributions and findings and outlines future re-

search directions.
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Chapter 2

Related work

Technologies for parallel programming enabling users to achieve productivity, expressive-

ness, and scalability have been a longtime focus of research. It would be desirable for

a user to write a parallel program once, then rely on the available tools to compile the

program on any particular parallel architecture and achieve good scalability. In practice,

parallel programming models range from library-based, such as Message Passing Interface

(MPI), to language-based, such as High-Performance Fortran (HPF) and ZPL. Sections 2.1

and 2.2 discuss several programming models, focusing on their main features, ease of pro-

gramming, expressiveness, availability, and documented performance. We also describe

communication optimization techniques used for those programming models. Section 2.3

discusses other implementations of Co-Array Fortran.

Understanding the performance bottlenecks of parallel programs is a first important step

on the way to achieving high-performance and scalability. It would be desirable to have

tools that automatically analyze unmodified, optimized parallel codes, determine scaling

impediments, and efficiently point a user to the scaling hot spots and associate them with

the appropriate source code. Section 2.4 describes previous work in parallel programs

performance analysis.

2.1 Library-based Parallel Programming Models

2.1.1 Message Passing Interface

Message Passing Interface (MPI) [97, 137, 138, 176] is a library-based parallel program-

ming model based on the two-sided communication message-passing paradigm. MPI is a
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single-program-multiple-data (SPMD) programming model,in which the users have a local

view of computation. The MPI 1.2 [137, 138, 176] standard provides support for blocking

and non-blocking point-to-point communication, barriers, collective routines such as re-

ductions, broadcast, and scatter-gather, user-defined types and user-defined communicator

groups. The MPI 2.0 [97, 137] standard adds support for one-sided communication, pro-

cess creation and management, additional collective routines, and parallel IO. A precursor

of MPI was PVM [181].

Even though the MPI 1.2 standard contains over 150 functions, studies of real applica-

tions have shown that the set of MPI primitives used in practice is smaller [189]. A study

by Han and Jones [100] showed that the 12 applications they studied spend approximately

60% of their execution time in MPI calls; non-blocking point-to-point communication calls,

such asISend, Irecv andWait, are much more commonly used than the blocking ones,

such asSend andRecv. Among the collective operations, five of them are particularly

common: barrier, allreduce, broadcast, gather and all-to-all.

Figure 2.1 presents an example of Jacobi 2D relaxation expressed in Fortran and MPI,

omitting the declarations. Each processor packs the overlap regions for the east and west

neighbors. Next, all processors posts non-blocking receives, by callingMPI Irecv, for

the north, south, west and east neighbors. The processors then perform blocking sends,

by callingMPI Send, to their neighbors, followed by potentially blocking checks that the

non-blocking receives from their neighbors have completed— by usingMPI Wait. The

received overlap regions are unpacked and the 5-point stencil is performed by every pro-

cess. Finally, the maximum absolute difference between theprevious temperature matrix

and the new one is computed by using the collective callMPI All Reduce.

MPI has implementations on virtually every parallel system; they range from open-

source ones [85, 94–96] to vendor versions [163, 174]. This ubiquitous availability has

helped MPI become thede factostandard for parallel programming, and enable large

groups of developers to write parallel programs and achieverelatively scalable perfor-

mance. Carefully hand-tuned MPI codes, such as the NAS parallel benchmarks [22–24]
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! update halo.
! pack
wSendBuf(1:MM) = ANS(1,1:MM)
eSendBuf(1:MM) = ANS(NN,1:MM)

! post receives
call MPI_IRECV(ANS(1,MM+1), NN, &

MPI_DOUBLE_PRECISION, &
NEIGHBORS(north), 99, MPI_COMM_WORLD,&
recvNorth, ierr)

call MPI_IRECV(ANS(1,0), NN, &
MPI_DOUBLE_PRECISION, &
NEIGHBORS(south), 99, MPI_COMM_WORLD,&
recvSouth, ierr)

call MPI_IRECV(eRecvBuf(1), MM, &
MPI_DOUBLE_PRECISION, &
NEIGHBORS(east), 99, MPI_COMM_WORLD, &
recvEast, ierr)

call MPI_IRECV(wRecvBuf(1), MM, &
MPI_DOUBLE_PRECISION, &
NEIGHBORS(west), 99, MPI_COMM_WORLD, &
recvWest, ierr)

! isend
call MPI_SEND(ANS(1,1), NN, &

MPI_DOUBLE_PRECISION, &
NEIGHBORS(south), 99, MPI_COMM_WORLD,&
ierr)

call MPI_SEND(ANS(1,MM), NN, &
MPI_DOUBLE_PRECISION, &
NEIGHBORS(north), 99, MPI_COMM_WORLD,&
ierr)

call MPI_SEND(wSendBuf(1), MM, &
MPI_DOUBLE_PRECISION, &
NEIGHBORS(west), 99, MPI_COMM_WORLD, &
ierr)

call MPI_SEND(eSendBuf(1), MM, &
MPI_DOUBLE_PRECISION, &
NEIGHBORS(east), 99, MPI_COMM_WORLD, &
ierr)

! check for completion
call MPI_WAIT(recvNorth, asynch_status, ierr)
call MPI_WAIT(recvSouth, asynch_status, ierr)
call MPI_WAIT(recvWest, asynch_status, ierr)
call MPI_WAIT(recvEast, asynch_status, ierr)

! unpack
ANS(NN+1,1:MM) = eRecvBuf(1:MM)
ANS(0,1:MM) = wRecvBuf(1:MM)

! 5-point stencil
do J= 1,MM

do I= 1,N N
WRK(I,J) = (1.0/6.0) * (RHS(I,J) + &

ANS(I-1,J ) + &
ANS(I+1,J ) + &
ANS(I, J-1) + &
ANS(I, J+1) )

enddo
enddo

! calculate global maximum residual error.
PMAX = MAXVAL( ABS( WRK(1:NN,1:MM) - &

ANS(1:NN,1:MM) ) )
call MPI_ALLREDUCE(PMAX, RESID_MAX, &

1, MPI_DOUBLE_PRECISION, &
MPI_MAX, MPI_COMM_WORLD, ierr)

Figure 2.1: 2D Jacobi relaxation example in MPI.

became a yardstick against which any other parallel implementations, library-based or

language-based, are compared and evaluated.

While MPI provides the means to write portable and efficient codes, it has a signifi-

cant productivity drawback. The message passing programming model is difficult to use

and error-prone. Programs based on library calls are traditionally difficult to optimize by

compilers, and in practice, the responsibility for achieving high-performance code falls

squarely on application developers. In their quest for higher performance, application de-
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velopers often encode information about the target machine, such as the optimum message

size for the interconnect, into the MPI code; this leads to hard-to-maintain code, since

potentially one would need to have different versions of thecommunication code tuned

for each architecture of interest. Another drawback is thatthe two-sided communication

model might not be best suited for the capabilities of a particular architecture. In the case of

hardware shared memory machines such as a SGI Altix 3000 [149,175] and Cray X1 [58],

MPI communication calls often introduce extra data copies between source and destination;

on clusters having interconnects with RDMA capabilities, such as Myrinet [21, 145, 146],

QSNet II [161,164], MPI communication calls would perform extra data copies.

From the perspective of development time productivity, it would be desirable to use

higher-level, language-based, parallel programming models, rather than the library-based

message passing model. The arguments to move higher on the abstraction scale from MPI

are that users manage less low-level details, becoming moreproductive; a compiler can

help tailor a parallel program to perform well on a particular architectures, improving the

performance portability of parallel codes and reducing their development and maintenance

costs. These advantages have a strong appeal; however, the reason that MPI is still the

most widely used parallel programming model is that higher level programming models

have failed to deliver the high-performance and scalability for the range of algorithms of

interest across the spectrum of available architectures, both shared-memory and cluster-

based. Delivering both the performance and development time productivity is therefore a

challenge for the parallel computing tools and technologies research community.

We show in this thesis that CAF codes can achieve performancecomparable to that

of corresponding MPI codes, for a range of applications including tightly-coupled codes

based on dense matrices, such as NAS BT, NAS SP, NAS MG, and LBMHD, and for

sparse irregular problems such as the NAS CG.

Communications optimizations such as vectorization, aggregation, and overlap of non-

blocking communication with computation are widely used inMPI codes. Such optimiza-

tions are however expressed strictly at the source level in MPI, and we describe how a CAF
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compiler could perform communication vectorization automatically.

MPI has a rich set of collective communication primitives, including support for broad-

cast, reductions, and scatter-gather operations. In this thesis we propose an implementation

design of CAF collective operations extensions using the corresponding MPI primitives,

and show that by using the language-level collective operations we are able to reduce the

initialization time of NAS MG by up to 60% on 64 processors, and also improve the exe-

cution time of LBMHD by up to 25% on 64 processors.

2.1.2 One-sided Communication Libraries

Recent advances in high-performance interconnects made one-sided communication li-

braries attractive for parallel computing. On loosely-coupled architectures, an efficient

one-sided communication library should take advantage of Remote Direct Memory Access

(RDMA) capabilities of modern networks, such as Myrinet [21] and Quadrics [161]. Dur-

ing an RDMA data transfer, the Network Interface Chip (NIC) controls the data movement

without interrupting the remote host Central Processing Unit (CPU). This enables the CPU

to compute while communication is in progress. On many multiprocessor architectures, a

cache coherence protocol is used to maintain consistency between CPU caches and mem-

ory that is the source or sink of communication. On shared memory platforms such as Altix

3000, one-sided communication is performed by the CPU usingload/store instructions on

globally addressable shared memory. The hardware uses directory-based cache coherence

to provide fast data movement and to maintain consistency between CPU caches and (local

or remote) shared memory. As the study [74] demonstrated, onshared-memory archi-

tectures fine-grain one-sided communication is fastest with compiler generated load/store

instructions, while large contiguous transfers are fasterwhen transmitted using amemcpy

library function optimized for the target platform.

Two portable, one-sided, communication libraries are Aggregate Remote Memory Copy

Interface (ARMCI) [150] and the GASNet [33] library.

ARMCI —a multi-platform library for high-performance one-sided communication—
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as its implementation substrate for global address space communication. ARMCI provides

both blocking and split-phase non-blocking primitives forone-sided data movement as

well as primitives for efficient unidirectional synchronization. On some platforms, using

split-phase primitives enables communication to be overlapped with computation. ARMCI

provides an excellent implementation substrate for globaladdress space languages making

use of coarse-grain communication because it achieves highperformance on a variety of

networks (including Myrinet, Quadrics, and IBM’s switch fabric for its SP systems) as well

as shared memory platforms (Cray X1, SGI Altix3000, SGI Origin2000) while insulating

its clients from platform-specific implementation issues such as shared memory, threads,

and DMA engines. A notable feature of ARMCI is its support fornon-contiguous data

transfers [151].

GASNet is a language-independent low level networking layer that provides portable

support for high-performance communication primitives needed for parallel global address

space SPMD languages. GASNet is composed of two layers: the lower level is an inter-

face termed the GASNet core API, based on active messages; the higher level is broader

interface called the GASNet extended API, which provides one-sided remote memory op-

erations and collective operations. GASNet is supported onhigh-performance network

interconnects such as Infiniband, Quadrics, Myrinet, LAPI,on shared memory platforms

such as the Cray X1 and SGI Altix 3000, and also has portable reference implementations

on top of UDP and MPI. To communicate using Active Messages (AM) [190], each mes-

sage sent between communicating processes contains two parts: one is a message handler

identifier, and the other is the message payload. Upon receiving an Active Message, a

dispatcher running on the receiving processor determines which Active Message handler

should be invoked, invokes it and it passes it the AM payload.

Libraries such as ARMCI and GASNet could be used directly to develop parallel appli-

cations, but they are cumbersome to use by a programmer. Instead, they are usually used as

communication layers by source-to-source compilers such ascafc and the Berkeley UPC

compiler.
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2.2 Language-based Parallel Programming Models

2.2.1 Unified Parallel C

Unified Parallel C (UPC) [45,78] is an explicitly parallel extension of ISO C that supports a

global address space programming model for writing SPMD parallel programs. In the UPC

model, SPMD threads share a part of their address space. The shared space is logically

partitioned into fragments, each with a special association (affinity) to a given thread. UPC

declarations give programmers control over the distribution of data across the threads; they

enable a programmer to associate data with the thread primarily manipulating it. A thread

and its associated data are typically mapped by the system into the same physical node.

Being able to associate shared data with a thread makes it possible to exploit locality. In

addition to shared data, UPC threads can have private data aswell; private data is always

co-located with its thread.

UPC’s support for parallel programming consists of a few keyconstructs. UPC pro-

vides theupc forall work-sharing construct. At run time,upc forall is responsible

for assigning independent loop iterations to threads so that iterations and the data they ma-

nipulate are assigned to the same thread. UPC adds several keywords to C that enable it

to express a rich set of private and shared pointer concepts.UPC supports dynamic shared

memory allocation. The language offers a range of synchronization and memory consis-

tency control constructs. Among the most interesting synchronization concepts in UPC

is the non-blocking barrier, which allows overlapping local computation and inter-thread

synchronization. Parallel I/O [77] and collective operation library specifications [193] have

been recently designed and will be soon integrated into the formal UPC language specifi-

cations. Also, [34] presented a set of UPC extensions that enables efficient strided data

transfers and overlap of computation and communication.

UPC and CAF belong to the same family of partitioned global address space languages.

Here, we mention some of the important differences between UPC and CAF. Based on

Fortran 90, CAF contains multidimensional arrays; arrays and co-arrays can be passed as
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procedure arguments, and can be declared with a different shape for the callee. Due to

its C legacy, UPC cannot pass multidimensional arrays as arguments; for scientific codes

which manipulate arrays, a UPC user has to resort to pointersand subscript linearization,

often using macros. To access local co-array data, a CAF userrelies on regular Fortran

90 array references, omitting the brackets; in UPC one performs array references using

the MYTHREAD identifier or C pointers. To access remote elements, CAF uses array ex-

pressions with explicit bracket expressions, while UPC perform flat array accesses through

shared pointers using linearized subscripts. For bulk and strided remote accesses, CAF

uses Fortran 90 array sections, while UPC employs library functions. UPC provides two

memory consistency models, strict and relaxed. Relaxed accesses performed by the same

or different threads can be observed in any order; however, relaxed accesses executed by

the same thread to the same memory location, with one access being a write, are observed

by all threads in order. Strict accesses are observed by all threads in the same order, as if

there was a global ordering of the strict accesses. If relaxed accesses occur before a strict

access, the results of the relaxed accesses are observed by all threads before the results of

the strict access; if a strict access is followed by relaxed accesses, then the results of the

strict accesses are observed by all threads before the results of the relaxed accesses. For

performance reasons, CAF provides a weak release consistency memory model. The UPC

NAS benchmarks were written using the relaxed memory model,mainly for performance

reasons. Having strict variables, however, is useful in enabling users to add synchronization

primitives at the source level.

The Berkeley UPC (BUPC) compiler [54] performs source-to-source translation. It

first converts UPC programs into platform-independent ANSI-C compliant code, tailors

the generated code to the the target architecture (cluster or shared memory), and augments

it with calls to the Berkeley UPC Runtime system, which in turn, invokes a lower level

one-sided communication library called GASNet [33]. The GASNet library is optimized

for a variety of target architectures and delivers high performance communication by ap-

plying communication optimizations such as message coalescing and aggregation as well
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as optimizing accesses to local shared data. We used both the2.0.1 and 2.1.0 versions of

the Berkeley UPC compiler in our study.

The Intrepid UPC compiler [122] is based on the GCC compiler infrastructure and

supports compilation to shared memory systems including the SGI Origin, Cray T3E and

Linux SMPs. The GCC-UPC compiler used in our study is version3.3.2.9, with the 64-

bit extensions enabled. This version incorporates inlining optimizations and utilizes the

GASNet communication library for distributed memory systems. Other UPC compilers

are provided by HP [105] and by Cray [60].

Performance studies of UPC codes on multiple architectures[26, 27, 42–44, 54] iden-

tified as essential optimizations non-blocking communication and computation overlap,

prefetching of remote data, message aggregation and privatization of local shared data,

strip-mining of messages, and efficient address translation, performed either at source or

runtime level.

Chenet al [53] present algorithms for enforcing sequential consistency for UPC pro-

grams by performing cycle detection. For Co-Array Fortran,we advocate a release consis-

tency memory model for performance reasons.

Iancuet al [119] describe a method of automatically generating non-blocking commu-

nication at runtime level; their implementation is at the user level, above the level of the

GASNet communication library. One interesting proposal isto complete remote communi-

cation on the first access to the remote data, by using the SIGSEV signal handler. Chenet

al [52] discuss compiler optimizations for fine grain accessesby redundancy elimination,

generation of non-blocking communication events forGETs andPUTs, and by coalescing

communication events. To coalesce fine grain reads, the proposed technique is to prefetch

locally the whole address range between the two reads, provided it is smaller than some

machine-dependent threshold.

UPC was extended with collective operations for broadcast,reductions (including user-

defined reductions), scatter-gather and general permutations [193]. While in our proposed

collective primitives extensions to CAF the data argumentsof collective operations can
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be either private or shared data, in UPC arguments are required to reside in the shared

space; this requires users that want to use collective operations on private data to either

copy the arguments into shared space or to redeclare or allocate the private data as shared

memory variables. A syntactic difference between UPC and CAF is that for UPC a user

has to specify the appropriate UPC collective operation primitive, based on the type of the

argument, while for CAF a compiler can infer the type and translate the collective operation

accordingly using overloading.

2.2.2 Titanium

Titanium [198] is a parallel global address space language designed as a parallel extension

of Java. Titanium provides a SPMD control model, flexible andefficient multi-dimensional

arrays (potentially amenable to compiler optimizations),built-in types for representing

multi-dimensional points, rectangles and general domainsthat are used to perform index-

ing of multidimensional arrays and to specify iteration spaces. Titanium supports unordered

loop iteration spaces, which might be exploited by an optimizing compiler. Titanium en-

ables memory management based on user controlled regions, besides regular Java garbage

collection, and user-defined immutable classes. For synchronization, developers use tex-

tual barriers, which simplify compiler analysis of synchronization. Objects are shared by

default, but users can control the sharing by using special qualifiers; Titanium possesses

an augmented type system used to express or infer locality and sharing for distributed data

structures. Titanium has a open-source multiplatform implementation, which is augmented

with a library of useful parallel synchronization operations and collectives.

Su and Yelick [178,179] describe an inspector executor method to optimize loops with

irregular accesses. The method uses textual barriers to transformGETs intoPUTs, and uses

a hardware performance model to determine how theGETs orPUTs should be performed.

They reuse a communication schedule if the loop performing the vectorization is enclosed

into a separate loop and they can prove that the indirection array is not modified.

Titanium supports broadcast, exchange and reduction (including user-defined reduc-
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tions) collective operations on teams of processors.

2.2.3 High Performance Fortran

High Performance Fortran (HPF) [80,106,107] is a high-level implicitly parallel program-

ming language. HPF consists of extensions to Fortran 90; a user writes a sequential pro-

gram in Fortran 90, then adds HPF directives to the Fortran code and then uses a HPF

compiler to compile the code into an executable parallel program. From the Fortran 90

syntax perspective, HPF directives are simply comments, soin the absence of an HPF

compiler a programmer can use a regular Fortran 90 compiler to compile an HPF program

into a sequential executable program. In Figure 2.2, we present an HPF code fragment

intended to model a multigrid method, from Allen and Kennedy[17]. The TEMPLATE

directive declares a virtual processor array. TheALIGN directive specifies how an array is

aligned with a certain template. TheDISTRIBUTEdirective specifies how a virtual pro-

cessor array or a data array is distributed over the memoriesof a parallel machine. This

specification is machine-independent. In the example presented in Figure 2.2, the template

T is block-distributed on both dimensions.

One core property of HPF programs is that many performance critical decisions are

made by the HPF compilers. To overcome potential limitations of HPF compilers, the HPF

standard was extended with directives that enable the user to convey program properties

to a compiler. TheINDEPENDENTdirective specifies that the following loop does not

carry data dependencies and therefore can be safely parallelized; as shown in the example,

this directive can also be used for nested loops. TheNEW directive is used to specify

variables that are replicated on each processor; in the example, the loop induction variable

I is replicated. Due to the wide use of reductions, HPF enablesthe user to specify that a

variable is collecting the result of a reduction, using theREDUCTIONdirective. HPF is

supported by several commercial compilers [35,37,38,99,130,135,180].

From a productivity standpoint, HPF would be the ideal language for scientific code

writers already proficient in Fortran. One of the often citeddrawbacks of HPF was its
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REAL A(1023, 1023), B(1023,1023), APRIME(511,511)
!HPF$ TEMPLATE T(1024, 1024)
!HPF$ ALIGN A(I,J) WITH T(I,J)
!HPF$ ALIGN B(I,J) WITH T(I,J)
!HPF$ APRIME(I,J) WITH T(2*I-1,2*J-1)
!HPF$ DISTRIBUTE T(BLOCK,BLOCK)

!HPF$ INDEPENDENT, NEW(I)
DO J=2, 1022 ! Multigrid smoothing (Red-Black)

!HPF$ INDEPENDENT
DO I=MOD(J,2), 1022, 2
A(I,J)=0.25*(A(I+1,J)+A(I+1,J)+A(I,J-1) &

+A(I,J+1)+B(I,J))
ENDDO

ENDDO

!HPF$ INDEPENDENT, NEW(I)
DO J=2, 510 ! Multigrid restriction

!HPF$ INDEPENDENT
DO I=2, 510
APRIME(I,J) = 0.05*(A(2*I-2,2*J-2)+ &

4*A(2*I-2,2*J-1)+A(2*I-2,2*J)+ &
4*A(2*I-1,2*J-2)+ 4*A(2*I-1,2*J)+ &
A(2*I, 2*J-2)+4*A(2*I,2*J-1) + &
A(2*I,2*J))

ENDDO
ENDDO

! Multigrid convergence test
ERR = MAXVAL(ABS(A(:,:)-B(:,:)))

Figure 2.2: HPF multigrid method example [17].

inability to match MPI performance for a range of applications. Recently, Chavarriaet

al [49, 50, 62, 63] showed that HPF codes using multipartitioning, a block-cyclic distribu-

tion, were able to match MPI performance for challenging line-sweep applications such as

the NAS benchmarks BT and SP.

A series of communication optimization techniques were developed for HPF: commu-

nication vectorization, communication coalescing, communication aggregation, support for

accesses through indirection arrays, computation replication [9–13,108–118,126,127].

HPF is an implicit parallel language, while CAF uses explicit parallelism. In HPF a

programmer is dependent on the HPF compiler to achieve performance, while in CAF the

user retains control over performance critical factors such as data distribution, communica-

tion and computation placement. CAF is more performance transparent than HPF: in CAF
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a programmer knows that high costs are incurred by remote accesses (marked syntactically

using brackets) and synchronization.

When performing communication optimizations for CAF, we have to take into account

several factors. First, remote references are explicit in the code, using the bracket nota-

tion; second, we have to observe the memory consistency model, by paying attention to

synchronization statements. When performing communication vectorization and commu-

nication aggregation for CAF, we first determine regions of code which are dominated and

postdominated by synchronization statements. Finally, matching the location on the source

and destination process images forPUTs orGETs is challenging; when we cannot do that,

we need to rely on either expressing communication at language level through Fortran 90

array sections syntax, or to use active messages. Dotsenko [72] uses textual barriers to

match communication endpoints between processes.

The vectorization algorithm we describe in chapter 10.4 hoists communication to the

outermost possible level, and performs hoisting of communication using complex expres-

sions as indices. We use a simplified version of the inspector-executor model, and do not

optimize remote accesses when using indirection arrays as described in Daset al [65–67],

and Hanxledenet al [101,102,184]. The CAF codes that we targeted used a single level of

indirection so the algorithm presented in chapter 10.4 would suffice to optimize them.

The HPF library contains collective routines; also, since the program formulation is

sequential, an implementation of the language would have tosupport all Fortran95 intrinsic

functions that perform some operation on full arrays, such as sum, min, max, etc. In CAF

a user has to code explicitly which collective operation he or she needs and specify the

appropriate arguments.

2.2.4 OpenMP

OpenMP [133] is an implicit parallel programming model, based on directives, library sup-

port and environment variables, added to sequential languages such as Fortran or C/C++.

OpenMP programs are a single thread — the master thread — at launch, but users can use
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parallel regions to start new threads — slave threads; at theend of a parallel regions control

returns to the master thread. Conceptually, OpenMP employsa fork-and-join parallelism

model. By using aOMP PARALLEL directive, a programmer specifies a region of code

that will be executed by all threads; the user can control thenumber of threads by using

a library routine or an environment variable. Loop-level worksharing is achieved by using

theOMP PARALLEL DO directive, which shares the iterations of a loop among the exist-

ing threads. To reduce the fork-and-join overhead, severalparallel loops can be combined

in a single parallel region. OpenMP provides several means of synchronization: barriers,

critical sections, atomic updates at statement level, and code sections executed only by the

master thread. User can specify both private and shared variables; global variables such

as COMMON or SAVE in Fortran of static variables in C are by default shared, while

stack variables in procedures called from parallel regionsare private. OpenMP enables

programmers to indicated that certain lines in a loop correspond to arithmetic reductions.

In Figure 2.3, we present a fragment from the STREAM benchmark [134] expressed

using OpenMP. The example uses several loop-level parallelism constructs, uniformly dis-

tributing the loop iterations among the executing threads.

OpenMP relies on users to to specify directives correctly. For example, one can useOMP

PARALLEL DO only if there are no loop-carried dependencies. OpenMP programmers

can use the incremental parallelism approach, when only a couple of loops at a time are

parallelized.

OpenMP is supported by a large number of commercial compilers for both Fortran 90

and C/C++ implementations. The biggest drawback to OpenMP is its lack of performance

on distributed shared memory platforms. Programmers don’thave syntactic means to indi-

cate the affinity between data and particular threads, whichleads to unnecessary commu-

nication at runtime. This affects even OpenMP performance on hardware shared-memory

machines: a study by Dotsenko, Coarfaet al [74] showed that for NAS benchmarks such as

SP class C and MG class C, the OpenMP versions are competitiveonly up to 9-16 proces-

sors, after which their efficiency degrades significantly with respect to the MPI and CAF
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!$OMP PARALLEL DO
DO 10 j = 1,n

a(j) = 2.0d0
b(j) = 0.5D0
c(j) = 0.0D0

10 CONTINUE
t = mysecond()

!$OMP PARALLEL DO
DO 20 j = 1,n

a(j) = 0.5d0*a(j)
20 CONTINUE

t = mysecond() - t

* --- MAIN LOOP ---
scalar = 0.5d0*a(1)
DO 70 k = 1,ntimes

t = mysecond()
a(1) = a(1) + t

!$OMP PARALLEL DO
DO 30 j = 1,n

c(j) = a(j)
30 CONTINUE

t = mysecond() - t
c(n) = c(n) + t
times(1,k) = t

t = mysecond()
c(1) = c(1) + t

!$OMP PARALLEL DO
DO 40 j = 1,n

b(j) = scalar*c(j)
40 CONTINUE

t = mysecond() - t
b(n) = b(n) + t
times(2,k) = t!$OMP PARALLEL DO
t = mysecond()
a(1) = a(1) + t
DO 50 j = 1,n

c(j) = a(j) + b(j)
50 CONTINUE

t = mysecond() - t
c(n) = c(n) + t
times(3,k) = t

t = mysecond()
b(1) = b(1) + t

!$OMP PARALLEL DO
DO 60 j = 1,n

a(j) = b(j) + scalar*c(j)
60 CONTINUE

t = mysecond() - t
a(n) = a(n) + t
times(4,k) = t

70 CONTINUE

Figure 2.3: STREAM benchmark kernel fragment expressed in Fortran+OpenMP.

versions of those benchmarks.

A recent trend is to use a hybrid OpenMP/MPI programming model on clusters of

SMPs, where one uses MPI to communicate among cluster nodes,but relies on OpenMP

to achieve parallelism within one node.

OpenMP enables users to specify reductions operations withing a parallel region by

indicating the reduction type and the argument; a compiler would then be responsible for

implementing the reduction. OpenMP does not have support for broadcast; to achieve the

same effect, a user would have to code an assignment to a shared variable and relay on

the compiler to recognize this communication pattern and implement it efficiently. Also

OpenMP does not allow users to specify their own reduction operators.



27

2.2.5 ZPL

ZPL [47, 70, 177] is a high-level, implicit parallel programming language, in which pro-

grammers have a global view of computation. We will give an overview of the language

by using a simple three-point stencil program presented in Figure 2.4. ZPL contains both

parallel and private arrays. Parallel arrays are declared usingregions. The parallel

arrayA has the indices sets specified by the regionBigR, [0..n+1, 0..n+1]. The

last row ofA is initialized to 1; the rest of the array is initialized to 0.Accesses to par-

allel arrays are performed exclusively by using special operators. To perform the stencil

computation, theat operator(@) is used; this operator shifts the values of the arrayA by

an offset vector called adirection and specified using the keyworddirection. In our

example, the stencil computation involves the east, north-west and north-east neighboring

cells. Shift references could potentially induce communication. The result of the stencil is

assigned to the parallel arrayTemp. Next, the program computes the difference between

the values ofA andTemp by using the sum reduction operator+<< applied to the par-

allel arrayA-Temp; ZPL supports reductions for others operators such as multiplication,

maximum and minimum. Notice that the index set for therepeat loop is specified by

using the regionR. Another operator for parallel arrays is theremapoperator, which en-

ables a programmer to specify data movement between parallel arrays using patterns more

complicated than the shift operator.

A core feature of ZPL is its transparent performance model, known aswhat-you-see-

is-what-get(WYSYWIG). A programmer is always aware of the places in the source code

that can trigger communication events. For example, a shiftoperator will probably induce

communication with certain neighbors of a processor. The reduce operator leads to a lo-

cal reduction per processor and then to log-cost communication between processors. The

remap operators causes potentially all-to-all communication, which is expensive.

An open-source ZPL compiler was developed at the WashingtonUniversity. The com-

piler perform source-to-source translation from ZPL to C with calls to a runtime library;

it can use the MPI, PVM [181] or SHMEM [61, 174] libraries as communication medium.
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program three_pt_stencil
config var

n :integer = 256;
region

R = [1..n, 1..n];
BigR = [0..n+1, 0..n+1];

direction
east=[ 0, -1];
nw = [-1, 1];
ne = [-1, 1];

var
A, Temp: [BigR] double;

constant
epsilon: double = 0.00001

procedure three_pt_stencil
var

nr_iters : integer
err : double

begin
[BigR] A := 0;
[south of R] A := 1;
nr_iters := 0;
[R] repeat

nr_iters += 1;
Temp := (A@east + A@nw + A@ne)/3.0;
err := +<<abs(A-Temp);

until err <= epsilon;
writeln(‘‘Iteration performed: %d\n’’:nr_iters);

end;

Figure 2.4: Parallel 3-point stencil program expressed in ZPL.

The ZPL compiler is responsible for mapping a parallel arrayto the set of available pro-

cessors; private scalars and arrays are replicated and keptconsistent. Recent extensions to

ZPL [71] enable the declaration of user-defined data distributions, improving the expres-

siveness of ZPL.

A study performed by Chamberlainet al [48] compares a ZPL version of MG, for

classes B (size2563) and C (size5123), with corresponding version written in MPI, HPF

and CAF. ZPL is able to match the performance of MPI on architectures such as a Linux

cluster with Myrinet interconnect, up to 128 processors, and a Sun Enterprise, up to 8 pro-

cessors; ZPL is slightly outperformed by the MPI one on a Linux cluster with Ethernet,

on an IBM SP machine, and on an SGI Origin. On a Cray T3E, however, the ZPL version

significantly outperforms MPI, up to 256 processors, due mainly to the ZPL compiler’s
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ability to harness the SHMEM [61, 174] library, leading to more efficient communication

than that of MPI. The authors speculate that generating codefor SHMEM on SGI and the

IBM SP would enable the ZPL code to match the MPI performance.A study by Dietz

et al [68] showed that a ZPL version of NAS CG using MPI as communication substrate

was able to match the MPI performance for class C (size150000) on an IBM SP2 for 128

processors and on a LinuxBios/BProc Cluster for up to 1024 processors. For FT, the MPI

version outperforms the ZPL version on the IBM SP2 and LinuxBios/BProc Cluster due

mainly to lower performance of the transposition phase of FT. The PhD thesis of Dietz [70]

shows that a ZPL versions of IS class C (with227 keys and210 buckets) achieves perfor-

mance comparable to that of the MPI version on a Cray T3E, up to256 processors. We

couldn’t find documented performance results for ZPL versions of the SP, BT and LU NAS

benchmarks.

Chamberlainet al [36] present communication optimizations performed by a ZPL com-

piler: message vectorization, message pipelining and redundant communicaiton removal.

Dietz et al [68] determine optimizations necessary for the implementation of a remapping

operator: using an inspector-executor schedule and savingit for multiple uses, compu-

tation/communication overlap, efficient schedule representation, dead source/destination

reuse and RDMAPUT/GET. CAF can express array remapping at language level as a suc-

cession of remote assignments. In case of vectorizing arrayaccesses with irregular ac-

cesses, we would compute the list of accessed array locations and pass it using an active

message to a remote node. Finally, at the level of the CAF compiler, we determine when we

perform co-array to co-array accesses and use direct sends/receives, effectively achieving

zero-copy communication.

ZPL supports both full reductions and parallel prefix reductions, broadcast operations,

applied to whole arrays or parts of an array. These operations are then translated by a ZPL

compiler. ZPL also supports user-defined reductions. The remapping operator can be used

to implement a collective exchange operation.

CAF is more performance transparent than ZPL: a CAF programmer has more control
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over the final performance of his or her code compared to a ZPL programmer, who needs

to rely on the ZPL compiler to generate efficient communication and computation.

2.2.6 SISAL

SISAL (Streams and Iterations in a Single Assignment Language) [79] is a general purpose

functional language. The order of execution of the program is determined by availability of

values for the operands of expressions rather than by staticordering in the program source,

making SISAL a dataflow language. A compiler has the freedom to schedule expression

evaluation in any order that satisfies data dependencies, even to schedule them in parallel.

SISAL supports calling C and Fortran routines to perform efficient local computaton. A

user can express parallelism in SISAL by using for loops, annotating loops for which all

iterations are independent. To get parallel performance, auser has to rely on the quality of

the SISAL compiler and runtime to achieve load balancing andmanage the communication

overhead.

osc [41] is an optimizing SISAL compiler that generates code forvector, sequential

and shared memory machines. osc transforms SISAL into Fortran or C code, augmented

with calls into the osc runtime system. osc performs optimizations such as update-in-place

intended to reduce the amount of copying, and splits the codeinto parts that can be executed

independently in parallel. The execution model relies on a shared queue that contains slices

of work and on a server thread that distributes the slices onto the available processors.

SISAL achieved comparable performace to hand tunded codes on shared memory machines

for a series of benchmarks: for the Abingdon Cross image processing benchmark [5] and

for several Livermore Loops [40].

Several efforts have been made to port SISAL to distributed memory machines.fsc[81]

is a prototype SISAL compiler for distributed and shared memory systems. fsc is derived

from the osc compiler, but modifies the code generation phaseto use the Filaments library

as a runtime system. Filaments is a library supporting fine-grained threads and shared

memory on distributed memory systems. Using fine-grain threads enables the implemen-
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tation of both recursive and loop-level parallelism, and itpermits runtime load balancing.

An fsc-compiled SISAL version of matrix multiply achieved aspeedup of 2.88 on 4 pro-

cessors, a Jacobi Iteration solver achieved 2.03 speedup on4 processors, and a version of

adaptive quadrature achieved a speedup of 3.59 on 4 CPUs.

D-OSC[86] extends osc to generate C code with calls to a message passing library.

D-OSC parallelizesfor loops; a master process determines slices of computation and dis-

tributes them to be executed in parallel by slave processes.If a slice contains other parallel

loops, the slave executing it takes the role of the master process and further distributes its

slices to other processors. D-OSC implements optimizations such as replacing multidimen-

sional arrays with rectangular arrays, coalescing messages directed to the same processor,

and using computation replication to reduce the need for communication. These optimiza-

tions reduce the number of messages and communication volume for benchmarks such as

selected Livermore and Purdue loops, matrix multiply, Laplace, but no timing measure-

ments were provided.

Pandeet al [160] extended the osc compiler to work on distributed memory machines;

they proposed a threshold scheduling algorithm for the SISAL tasks that trades off between

parallel speedup and necessary number of processors. At runtime, message passing is

used to communicate the necessary values between processors. The experiments showed

speedups of up to 10 on 33 processors for various Livermore loops.

While SISAL codes showed good scalability on tightly coupled shared memory sys-

tems, achieving similar results on large scale distributedmemory systems remains an open

problem. Using CAF, users can get high-performance and scalability on both shared and

distributed memory, by retaining explicit control of data decomposition and communica-

tion and computation placement.

2.2.7 NESL

NESL [2, 28–32] is a data-parallel programming language using functional semantics de-

veloped at Carnegie Mellon. NESL offered two new key concepts: nested data parallelism,
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function sparse_mvmult(A,x) =
let ids,vals = unzip(flatten(A));

newvals = {vals*g:vals;g in x->ids}
in {sum(row): row in partition(newvals,{#A:A})} $

% A sparse matrix and a vector %
function jacobi_loop(x,A,b,i) =
if (i == 0) then x
else let

y = sparse_mvmult(A,x);
x = {x + b - y: x in x; b in b; y in y };

in jacobi_loop(x,A,b,i-1) $

function jacobi(A,b,n) =
jacobi_loop(dist(0.,#a),a,b,n);

A = [[(0, 1.), (1, .2) ],
[(0, .2), (1, 1.), (2, .4)],
[ (1, .4), (2, 1.)]];

b = [1.,1.,1.];

% Run jacobi for steps iterations %
x = jacobi(A,b,steps);

% Check how close the answer is -- it should equal [1,1,1] %
sparse_mvmult(A,x);

Figure 2.5: A Jacobi solver fragment expressed in NESL [3].

which makes it suitable for expressing irregular algorithms, and a language-based perfor-

mance model, enabling a programmer to calculate the work andthe depth of a program,

metrics related to the program execution time. Functional semantics enables functions to

be executed in parallel when there is no aliasing between sibling function calls. NESL

enables these functions to spawn other parallel function calls. NESL also supports data

parallelism using its sequence concept: a one dimensional distributed array consisting of

data items or other sequences. NESL has a parallel apply-to-each construct that operates in

parallel on the elements of a sequence. In Figure 2.5 we present a fragment from a Jacobi

solver expressed in NESL, that executessteps iterations.

Although the performance model gives users an estimate of the running time of a NESL

program, issues such as data locality and interprocessor communication are completely un-

der a NESL compiler’s control. In CAF, a programmer retains control over such perfor-

mance critical decisions.
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inline double[] onestep(double[] B) {
A = with ( . < x < . )
modarray(B, x, 0.25*(B[x+[1,0]]

+ B[x-[1,0]]
+ B[x+[0,1]]
+ B[x-[0,1]]) );

return(A);
}

inline double[] relax(double[] A, int steps) {
for (k=0; k<steps; k++) {

A = onestep(A);
}
return(A);

}

int main () {
A = with( . <= x <= .)
genarray([SIZE1, SIZE2], 0.0d);

A = modarray(A, [0,1], 500.0d);

A = relax( A, LOOP);

z = with( 0*shape(A) <= x < shape(A))
fold(+, A[x]);

printf("%.10g\n", z);

return(0);
}

Figure 2.6: Fragment of a Jacobi solver written in SAC [169]

.

2.2.8 Single Assignment C (SAC)

Single Assignment C (SAC) [170,171] is a functional parallel programming language based

on ANSI C. It supports multidimensional C arrays, array properties query operators, and it

contains the operatorwith-loop, which can be used for array creation, operations that

modify array elements, or to fold array elements into one value using binary operators.

In Figure 2.6 we present a Jacobi relaxation solver written in SAC that uses a five point

stencil.

Performance-critical decisions for SAC programs, such as interprocessor communica-

tion, are left at the compiler’s discretion, as opposed to CAF programs, where communi-

cation is syntactically marked. SAC is implemented as of this writing on shared-memory

systems only, while our CAF compiler works on a wide range of systems. Performance
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studies [48, 92, 93] showed that while SAC displayed good scaling, they suffered from

scalar performance problems compared to their Fortran 77 counterparts for NAS FT, for

which it was slower by a factor of 2.8x, and is within 20% from the serial performance of

NAS MG for class A (size2563).

2.2.9 The HPCS Languages

As part of the DARPA High Productivity Computing Systems (HPCS) [1] effort to real-

ize efficient parallel architectures and productive programming models, several vendors

proposed new language-based parallel programming model. Cray introduced the Chapel

language [59], IBM proposed the X10 language [120], and Sun designed the Fortress lan-

guage [16]. While these languages have generated significant commercial and academic

interest, as of the writing of this document they only have prototype implementations, and

published performance results on masivelly parallel systems are not available yet.

2.3 Implementations of Co-Array Fortran

Before our work, the only available implementation of the Co-Array Fortran language was

the one provided by Cray [173], only on Cray X1 and Cray T3E machines. It used the native

Fortran 90 vectorizing compiler to perform transformations such as communication vector-

ization and strip-mining, streaming remote data into localcomputation and making efficient

use of the vector processing capabilities of the machines. Our compiler is multiplatform,

which should help broaden the acceptance of the CAF model. A study by Chamberlain

et al [48] showcased the capability of CAF of delivering parallelperformance superior to

that of MPI on hardware shared memory Cray platforms. We showin this thesis that CAF

can match or exceed MPI performance on a range of architectures, both cluster and shared

memory. To achieve performance portability for CAF, essential optimizations are proce-

dure splitting, communication vectorization, communication packing and communication

aggregation, and synchronization strength reduction. We have not portedcafc to Cray

platforms yet.
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Wallcraft has developed a translator [192] from Co-Array Fortran to OpenMP, which

works only for a subset of CAF and targets shared-memory architectures. Wallcraft per-

formed a study of the CAF potential compared to MPI for the HALO benchmark [191],

showing that CAF can deliver good latency on hardware shared-memory architectures.

Eleftheriouet al implemented a co-array style C++ library for the Blue Gene/Lsuper-

computer, rather than as a language, for the purpose of rapidprototyping and deployment.

Two threads are defined for each process image, one performing the local computation, the

other one servicing communication requests. We believe that a library-based implemen-

tation, while rapid to develop and useful for performance potential evaluation, lacks the

automatic optimizations that a compiler-based language implementation can offer.cafc

is not implemented on Blue Gene/L at the moment; as of this writing, the ARMCI and

GASNet communication libraries are emerging on this platform.

Dotsenko [72] proposed, implemented and evaluated severallanguage extensions for

CAF. Co-functions, which enable computation shipping, simplify the writing of parallel

search operations and enabled a CAF version of the RandomAccess benchmark to out-

perform the MPI implementation. Co-spaces, textual barriers and single-value variables

enabled an automatic implementation of synchronization strength reduction, which con-

verts barriers into notify-wait synchronization. Finally, multiversion variables extend the

CAF language with two-sided communication and yielded performance comparable to that

of hand-coded versions for NAS SP and the Sweep3D benchmark.

2.4 Performance Analysis of Parallel Programs

There are many approaches to analyzing the scalability of parallel programs. We can sep-

arate the analysis problem into several subproblems:acquiringthe performance data,ana-

lyzingit andpresentingit in a form useful to application developers. Our automaticscaling

analysis based on expectations collects performance data on unmodified, fully-optimized

binaries using sampling-based callstack profiling implemented bycsprof, independent

of the parallel programming model. Next, it perform a scaling analysis after the program
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execution during which associates scalability information with calling context tree nodes.

Finally, it useshpcviewer to display this information to an application developer.

Vampir [147], MPE and Jumpshot [197, 199], MPICL [196] and ParaGraph [103, 104]

are toolsets that perform tracing of MPI calls; they use instrumented versions of the MPI

library. They build and display time-space diagrams of the communication activity. Such

tools enable users to visually determine inefficient communication patterns and map them

back to source code. They are complementary to the call-stack profiling analysis and vi-

sualization provided bycsprof, the source correlation module andhpcviewer. The

trace size collected by such tools is proportional to the number of communication calls,

while forcsprof the performance data size is proportional to the size of the call tree. Our

scaling analysis method is also able to determine scaling inefficiencies due to non-scaling

computation, and attributes scaling impediments to all nodes in the calling context trees.

The Pablo performance analysis environment [166] records and analyzes user specified

events. It collects event traces, event counters, and time intervals. It requires instrumenta-

tion of the source code to insert calls to the data tracing library; this is achieved through

means of a graphical interface. Pablo incorporates severalstrategies to control the amount

of trace data. First, it monitors the frequency of events, and if the frequency of an event ex-

ceeds a threshold, then it records only the event count, but not a trace of the event. Second,

it performs dynamic statistical clustering of trace data. Our analysis strategy works on un-

modified optimized binaries, and the user control the performance data size by controlling

the sampling frequencey.

OMPtrace [46] is a trace-based system used for profiling of MPI codes. It performs

binary instrumentation of calls into the OpenMP runtime, and can collect metrics from

hardware counters to measure events such as cycles, cache misses, floating point instruc-

tions and memory loads. OMPtrace also has the ability to collect user-specified events.

Traces are then analyzed and displayed by Paraver [162]; a user can instruct Paraver to

present both raw and user-defined metrics. We usedcsprof to profile MPI, CAF and

UPC programs, and we have no experience with usingcsprof to analyze OpenMP pro-
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grams; however, our method should apply to analyze the scaling of SPMD-style OpenMP

programs. Our infrastructure also supports the measurement of user-defined events, en-

abling scaling analysis for them as well.

Falcon [98] is a trace-based online parallel program steering system. Users define “sen-

sors” that are application specific and rely on an instrumentation tool to incorporate them

into the executable program. At runtime, trace informationcollected by these sensors is

sent to a central server and analyzed; as a result of this analysis the system or a user can rec-

ommend then enforce changes in the program (such as changingan underlying algorithm

or replacing global computations with less precise local computations). In this respect it

represents also an infrastructure for adaptive improvement of parallel programs. Active

Harmony [55, 183, 185] is a software architecture that supports automated runtime tuning

of applications. Applications export a set of tuning parameters to the system; an adaptation

server would use a search-based strategy to select the set ofparameters that yields the best

results, i.e. running time or memory usage. Our method perform post-mortem analysis of

program scaling analysis, but its results can be used as wellto improve program perfor-

mance. We present in this thesis its applicability to strongscaling analysis, but our method

could be applied to analyze scaling with respect to any parameters, such as input size, and

could be used to evaluate for example the benefits of using different scalar and parallel

algorithms. Also, a steering-based system could use our method to analyze online the ben-

efits of changing aspects of the program execution. By not making any prior assumptions

regarding the lack of scaling causes, our method can be used to discover potential scaling

parameters, acting as a complement to such online performance tuning systems.

Vetter [186] describes an assisted learning based system that analyzes MPI traces and

automatically classifies communication inefficiencies, based on the duration of such com-

munication operations as blocking and nonblocking send/receive. Our analysis method is

generally applicable, without looking for particular inefficient performance patterns. We

have not explored using learning strategies to analyze the performance data; when analyz-

ing large programs, with numerous subroutine exhibiting various degrees of scaling loss,
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we believe that learning and data minining strategies mightbe necessary to point a user to

scaling hotspots.

Wu et al [197] present a strategy of performing trace-based analysis of multithreaded

MPI implementations running on SMP clusters. A challenge isto account for thread

scheduling within an SMP nodes. Their system infers interval records from tracing events;

this is then used to generate multiple views such as thread activity view, processor activity

view, and thread-processor view, which tracks thread scheduling among different proces-

sors on the same node. Interval record data is then visualized using Jumpshot. While our

method is applicable independent of the programming model,we do not analyze thread

migration; all our experiments used processes bound to processors for the duration of the

program.

mpiP [188] uses an instrumented MPI library to record calls to MPI primitives and per-

forms call-stack unwinding of user-selectable depth. Vetteret aldescribed a strategy [188]

they call rank-based correlation to evaluate the scalability of MPI communication prim-

itives. Their notion of scalability is different than ours:an MPI communication routine

does not scale if its rank among other MPI calls performed by the application increases

significantly when the number of processors increases. Becausecsprof collects profile

data for the whole application automatically, we can compute, associate and display scala-

bility information for all the calling context tree nodes, not just with those associated with

MPI calls. Moreover, we can descend inside MPI calls, and analyze if their implementa-

tion shows lack of scaling. An important advantage of our method is that it gives a user

quantitativeinformation regarding the lack of scaling, while the rank-correlation method

yields onlyqualitativeinformation. The overhead of mpiP is proportional to the number of

MPI calls, while the overhead ofcsprof is proportional to the sampling frequency.

PHOTON MPI [187] uses an instrumented MPI profiling layer anda modified MPI

library to implement communication sampling: only some of the MPI blocking and non-

blocking communication events are considered according toone of multiple sample strate-

gies. The data gathered can be analyzed at runtime in the profiling layer and only summary
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information needs to be kept around and later written to a file. This approach reduces dra-

matically the size of trace files and also reduces and controls the profiling overhead. How-

ever, at the moment this approach does not uses callstack information for data analysis.

Our scaling analysis method does not generate a statisticalclassification of communication

without communication library instrumentation. However,the calling context trees for a

particular parallel execution could be used to present and classify the communication calls

based on their cost, rather than their size. We haven’t explored program characterization

based on CCTs.

Quartz [20] aims to determine the causes for loss of parallelism for applications running

on a multiprocessors system. Quartz can detect causes such as load imbalance, contention

on synchronization objects, excessive time spent in serialparts of a code. The main metric

of Quartz is normalized processor time, defined as processortime divided by concurrent

parallelism. Quartz works by periodically checkpointing to memory the number of busy

processors and the state of each processor, and using a dedicated processor to analyze this

data. Quartz displays the costs it found in a top-down fashion according to the call graph.

Our approach of usingcsprof enables profiling of both shared-memory and distributed

memory applications, without dedicated processors; our top-down and bottom-up views

enable a user to determine the cost of spin-waiting or communication and assign them to

nodes in the calltree. If an application exhibits systematic load imbalance, synchroniza-

tion objects contention, or serialization, then our methodwould pinpoint their effects on

scaling. However, if the goal is analyzing parallel performance problems based on a single

parallel run, then we could use the CCTs collected on different nodes to determine load

imbalance by employing the expectation of equal execution times for the CCT nodes of the

two performance profiles.

Paradyn [139] is a parallel performance analysis infrastructure that relies on dynamic

instrumentation of binaries. Since instrumented program parts exhibit significant execution

time overheads, to make this analysis method feasible for long-running parallel programs

Paradyn needs to be parsimonious with which program segments are instrumented. The
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approach is to use a performance problem search strategy to identify apriori known inef-

ficiency causes, which program parts lead to loss of performance, and at which point in

the program execution. The analysis results are used to instrument only those program

parts, rather then the whole program. Our scaling analysis method doesn’t make any as-

sumption about the scalability impdiments, identifying all non-scaling calling context tree

nodes. Such a method could be a complement to Paradyn, by discovering causes of lack of

scaling. Our performance data collection is extremely efficient, compared to using instru-

mentation of binaries; however, at the moment we do not exclude performance data from

the final calling context tree, whereas after Paradyn would determine that a program part

performs well, it would ignore it in further analysis.

KOJAK [143] is a software system aiming to automatically detect communication bot-

tlenecks. It works with C, C++, and Fortran source code, for the MPI, OpenMP and

SHMEM programming models. The approach requires instrumentation of the application.

The source code is processed by OPARI [140,142] which instruments OpenMP constructs

and generates calls to the POMP [141] API. Functions can be instrumented at source level

using TAU [172] or at binary level using DPCL [69]. MPI calls are instrumented using the

PMPI library [137, 138]. The performance traces are produced using the EPILOG [194]

library. The resulting traces can be analyzed by the EXPERT [195] analyzer, which at-

tempts to determine patterns that correspond to known inefficiencies, and are then dislayed

using the EXPERT presenter. Additionally, the EPILOG traces can be converted to VAM-

PIR format and visualized with the VAMPIR event trace analysis tool. The execution time

overhead is proportional to the number of instrumented functions called and can lead to

large output trace sizes. Our method has a controlable overhead, by setting the sampling

frequency, and it works on unmodified, fully optimized binaries, being thus easier to use.

Our scaling analysis is also independent of the programmingmodel. EXPERT looks for

several performance problems categories, which might be more useful for an application

developer, while our method determines CCT nodes that exhibit poor scaling, and then

relies on the user to identify and address the source of the scaling problems.
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Chapter 3

Background

We have introduced the Co-array Fortran programming model in Chapter 1. This chap-

ter describes refinements to CAF aimed towards writing high-performance, scalable and

performance portable codes, and the parallel benchmarks used in this thesis.

3.1 Refinements to the CAF Programming Model

Our previous studies [56, 73] identified a few weaknesses of the original CAF language

specification that reduce the performance of CAF codes and proposed extensions to CAF to

avoid these sources of performance degradation. First, theoriginal CAF specification [156]

requires programs to have implicit memory fences before andafter each procedure call to

ensure that the state of memory is consistent before and after each procedure invocation.

This guarantees that each array accessed within a subroutine is in consistent state upon

entry and exit from the subroutine. In many cases, an invokedprocedure does not access

co-array data at all or accesses only co-array data that doesnot overlap with co-array data

accessed by the caller. As a consequence, it is not possible to overlap communication with

a procedure’s computation with memory fences around the procedure’s call sites.

Second, CAF’s original team-based synchronization required using collective synchro-

nization even in cases when it is not necessary. In [56], we propose augmenting CAF with

unidirectional, point-to-point synchronization primitives:sync notify andsync wait.

sync notify(q) sends a notify to process imageq; this notification is guaranteed to be

seen by imageq only after all communication events previously issued by the notifier to

imageq have been completed.sync wait(p) blocks its caller until it receives a match-

ing notification message from the process imagep. Communication events for CAF remote
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data accesses are blocking. While it is possible to exploit non-blocking communication in

some cases, automatically replacing blocking communication with its non-blocking coun-

terpart and overlapping communication with computation requires sophisticated compiler

analysis. To enable savvy application developers to overlap communication and computa-

tion in cases where compiler analysis cannot do so automatically, it is useful for CAF to

provide a user-level mechanism for exploiting non-blocking communication. To address

that, we proposed a small set of primitives that enable application developers to delay the

completion of communication events, presented in more detail in section 5.5.

Collective communication calls are important building blocks for many parallel algo-

rithms [91], so supporting them efficiently in CAF codes is paramount. There are several

alternatives:

1. Users must write their own reductions: this leads to applications that are performance

portable.

2. CAF should be extended with collective operations as language primitives. While

a recent revision of the CAF standard [154] proposes a small set of collective op-

erations, we believe that CAF users should be able to expresscomplex collective

operations such as all-to-all, scatter-gather, and reductions with both traditional op-

erators —sum, product, max, min — and user-defined operations. CAF would be

then extended with the corresponding primitives.

3. Collective operations should be provided as part of the standard library, and let the

vendors be responsible for the most efficient implementation on a certain platform.

This alternative is also pragmatic, but in long term we mightprefer to have a CAF

compiler analyze the collective operations and perhaps optimize them; this might be

more difficult with collectives implemented as library calls.

Algorithms for efficient collective operations use different approaches for different ma-

chines and different interconnects; if sophisticated reductions are part of the language or of

the standard library, then a CAF compiler could select the appropriate collective operation
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implementation for the target architecture at build time, as part of a autotuning step. In

Chapter 11 I present and evaluate a set of collective operations extensions to CAF and an

implementation strategy based on MPI.

3.2 Benchmarks

3.2.1 The NAS Parallel Benchmarks

The NAS parallel benchmarks [24] are widely used to evaluatethe performance of parallel

programming models. In this thesis I used several of them: SP, BT, MG, CG, and LU.

NAS SP and BT. As described in a NASA Ames technical report [24], the NAS

benchmarks BT and SP are two simulated CFD applications thatsolve systems of equa-

tions resulting from an approximately factored implicit finite-difference discretization of

three-dimensional Navier-Stokes equations. The principal difference between the codes is

that BT solves block-tridiagonal systems of 5x5 blocks, whereas SP solves scalar penta-

diagonal systems resulting from full diagonalization of the approximately factored scheme.

Both SP and BT consist of an initialization phase followed byiterative computations

over time steps. Each time step first calculates boundary conditions, then calculates the

right hand sides of the equations. Next, it solves banded systems in three computationally

intensive bi-directional sweeps along each of the x, y, and zdirections. Finally, it updates

flow variables. Each time step requires loosely-synchronous communication before the

boundary computation, and employs tightly-coupled communication during the forward

and backward line sweeps along each dimension.

Because of the line sweeps along each of the spatial dimensions, traditional block dis-

tributions in one or more dimensions would not yield good parallelism. For this reason, SP

and BT use a skewed block cyclic distribution called multipartitioning [24, 148]. A funda-

mental property of multipartitioning distributions is that a single physical processor owns

all of the tiles that are neighbors of a particular processor’s tiles along any given direction.

Consequently, if a processor’s tiles need to shift data to their right neighbor along a particu-
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lar dimension, the processor needs to send values to only oneother processor. This property

is exploited to achieve scalable performance. With this distribution, each processor handles

several disjoint blocks in the data domain. Blocks are assigned to the processors so that

there is an even distribution of work for each directional sweep and each processor has a

block on which it can compute in each step of every sweep. Using multipartitioning yields

full parallelism with even load balance while requiring only coarse-grain communication.

The MPI implementation of NAS BT and SP attempts to hide communication la-

tency by overlapping communication with computation, using non-blocking communica-

tion primitives. For example, in the forward sweep, except for the last tile, non-blocking

sends are initiated to update the ghost region on its neighbor’s next tile. Afterwards, each

process advances to its own next tile, posts a non-blocking receive, performs some local

computation, then waits for the completion of both its non-blocking send and receive. The

same pattern is present in the backward sweep.

NAS MG. The MG multigrid benchmark computes an approximate solution to the

discrete Poisson problem using four iterations of the V-cycle multigrid algorithm on an ×

n × n grid with periodic boundary conditions [24].

In the NAS MG benchmark, for each level of the grid, there are periodic updates of the

border region of a three-dimensional rectangular data volume from neighboring processors

in each of six spatial directions. The MPI implementation uses four buffers, two for receiv-

ing and two for sending data. For each of the three spatial axes, two messages (except for

the corner cases) are sent using blocking MPI send to update the border regions on the left

and right neighbors.

NAS CG. In the NAS CG parallel benchmark, a conjugate gradient method is used to

compute an approximation to the smallest eigenvalue of a large, sparse, symmetric posi-

tive definite matrix [24]. This kernel is typical of unstructured grid computations in that it

tests irregular long distance communication and employs sparse matrix vector multiplica-

tion. The irregular communication requirement of this benchmark is a challenge for most

systems.
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On each iteration of loops involving communication, the MPIversion initiates a non-

blocking receive to wait for data from the processor specified byreduce exch proc(i),

followed by an MPI send to the same processor. After the send,the process waits until its

MPI receive completes. Thus, there is no overlap of communication and computation.

NAS LU. The NAS LU parallel benchmark solves the 3D Navier-Stokes equation as

do SP and BT. LU implements the solution by using a SuccessiveOver-Relaxation (SSOR)

algorithm which splits the operator of the Navier-Stokes equation into a product of lower-

triangular and upper-triangular matrices (see [24] and [84])). The algorithm solves five

coupled nonlinear partial differential equations on a 3D logically structured grid using an

implicit pseudo-time marching scheme. It is a challenging application to parallelize ef-

fectively due to the potential for generating many small messages between processors.

Computationally, the application is structured by computing the elements of the triangular

matrices in the subroutinesjacld andjacu respectively. The next step is to solve the

lower and upper triangular systems, using subroutinesblts andbuts. After these steps,

the variables are updated, a new right-hand side is computedand the process repeats in-

side a time-step loop. The MPI code requires a power-of-two number of processors. The

problem is partitioned on processors by repeatedly halvingthe grid in the dimensions x

and y, alternately, until all power-of-two processors are assigned. This results in vertical

pencil-like grid partitions on processors.

For each z plane, the computations proceeds as a sweep starting with one corner in a z

plane to the opposite corner of the same z-plane; the computation is structured as a wave-

front. The communication of partition boundaries occurs after the computation is complete

on all diagonals that contact an adjacent partition. This has the potential of generating a

relatively large number of small messages of 5 words each.

3.2.2 LBMHD

LBMHD [157] simulates a charged fluid moving in a magnetic field using a Lattice Boltz-

mann formulation of the magnetohydrodynamics equations. The benchmark performs sim-



46

ulations for a 2D spatial grid, which is coupled to an octagonal streaming lattice and block

distributed over a 2D processor grid. The simulation consists of a sequence of collision

and stream steps. A collision step performs computation only on local data. A stream step

requires both contiguous and strided communication between processors for grid points at

the boundaries of each block, and third degree polynomial evaluation.
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Chapter 4

A Source-to-source Compiler for Co-array Fortran

We designed thecafc compiler for Co-array Fortran with the major goals of being portable

and delivering high-performance on many platforms. Ideally, a programmer would write a

CAF program once in a natural style andcafc would adapt it for high performance on the

target platform of choice.

To achieve this goal,cafc performs source-to-source transformation of CAF code

into Fortran 95 code augmented with communication operations. By employing source-

to-source translation,cafc aims to leverage the best Fortran 95 compiler available on

the target platform to optimize local computation. We choseto generate Fortran 95 code

rather than C code because for scientific programs Fortran 95compilers tend to generate

more efficient code than C compilers, on equivalent codes. For communication,cafc

typically generates calls to one-sided communication library primitives, such as ARMCI or

GASNet; however. For shared memory systemscafc can also generate code that employs

load and store operations for communication.cafc is based on OPEN64/SL [159], a

version of the OPEN64 [158] compiler infrastructure that we modified to supportsource-

to-source transformation of Fortran 95 and CAF. This chapter describes joint work with

Yuri Dotsenko.

4.1 Memory Management

To support efficient access to remote co-array data on the broadest range of platforms,

memory for co-arrays must be managed by the communication substrate; typically, this

memory is managed separately from memory managed conventionally by a Fortran 95

compiler’s runtime system. Currently, co-array memory is allocated and managed by un-
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derlying one-sided communication libraries such as ARMCI and GASNet, for the sake of

communication efficiency. For ARMCI, on cluster systems with RDMA capabilities, co-

arrays are allocated in memory that is registered and pinned, which enables data transfers

to be performed directly using the DMA engine of the NIC. For GASNet, the allocated

memory is used with an efficient protocol named Firehose, that register with the NIC and

pins the memory pages actually used in communication.

cafc has to manage memory for static co-arrays, such as SAVE and COMMON, and

for dynamic co-arrays, such as ALLOCATABLE.

• The memory management strategy implemented bycafc for SAVE and COMMON

co-arrays has three components. At compile time,cafc generates procedure view

initializers, which are responsible for allocating the proper storage and setting up the

co-array representation for local accesses. At link time,cafc collects all the initial-

izers and synthesizes a global startup procedure that callsthem. Finally, on program

launch, the global startup procedure is called and it performs co-array memory allo-

cation and initialization of co-array representation for local access.

• For ALLOCATABLE co-arrays,cafc transforms allocation statements into a call

to the runtime library that collectively allocates co-array memory and sets the co-

array views. On deallocation,cafc issues a call to a collective routine that frees the

co-array storage.

4.2 Local Co-Array Accesses

For CAF programs to perform well, access to local co-array data must be efficient. Since

co-arrays are not supported in Fortran 95, we need to translate references to the local por-

tion of a co-array into valid Fortran 95 syntax. For performance, our generated code must

be amenable to back-end compiler optimization. In chapter 5we describe several alter-

native representations for co-arrays. Our current strategy is to use a Fortran 95 pointer to

access local co-array data. Because thecafc runtime system must allocate co-array data
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outside the region of memory managed by the Fortran 95 runtime system, we need the

ability to initialize and manipulate compiler-dependent representations of Fortran 95 array

descriptors. A Fortran 95 pointer consists of an array descriptor known as a dope vectors

We leverage code from the CHASM library [165] from Los AlamosNational Laboratory

to enablecafc to be usable with multiple compilers on a range of platforms.

4.3 Remote Co-Array Accesses

Co-array accesses to remote data must be converted into Fortran 95; however, this is not

straightforward because the remote memory may be in a different address space. Although

the CAF language provides shared-memory semantics, the target architecture may not; a

CAF compiler must perform transformations to bridge this gap. On a hardware shared

memory platform, the transformation is relatively straightforward since references to re-

mote memory in CAF can be expressed as loads and stores to shared locations; in previous

work [74] we explored alternative strategies for performing communication on hardware

shared memory systems. The situation is more complicated for cluster-based systems with

distributed memory.

To perform data movement on clusters,cafc must generate calls to a communication

library to access data on a remote node. Moreover,cafc must manage storage to tem-

porarily hold remote data needed for a computation. For example, in the case of a read

reference of a co-array on another image, as shown in Figure 4.1(a) a temporary,temp,

is allocated just prior to the statement to hold the value of thecoarr(:) array section

from image p. Then, a call to get data from image p is issued to the runtime library. The

statement is rewritten as shown in Figure 4.1(b). The temporary is deallocated immediately

after the statement. For a write to a remote image, such as theone in Figure 4.1(c), a tem-

porarytemp is allocated prior to the remote write statement; the resultof the evaluation of

the right-hand side is stored in the temporary; a call to a communication library is issued

to perform the write; and finally, the temporary is deallocated, as shown in Figure 4.1(d).

When possible, the generated code avoids using unneeded temporary buffers. For example,
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arr(:)=coarr(:)[p] + ...

... allocate temp ...

... remote read call ...

arr(:) = temp(:) + ...

... deallocate temp ...

(a) Remote read example (b)cafc-generated code

coarr(:)[p1,p2]= ...

... allocate temp ...

temp(:)=...

... remote write call ...

... deallocate temp ...

(c) Remote write example (d)cafc-generated code

coarr(:)[p1,p2]= coarr(:)

(e) Co-array to co-array communication

Figure 4.1: Examples of code generation for remote co-arrayaccesses.

for an assignment performing a co-array to co-array copy, such as shown in Figure 4.1(e),

cafc generates code to move the data directly from the source intothe destination. In gen-

eral,cafc generates blocking communication operations. However, user directives [73]

enablecafc to exploit non-blocking communication.

4.4 Argument Passing

CAF provides two methods of passing co-array data:by valueandby co-array. To pass

co-array data by value, one uses parantheses around a co-array reference, as one would

do to pass by value in Fortran 95. To pass co-array data by co-array, the programming

model requires that an interface always be used for the called subroutine. The shape of
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an argument co-array must be defined in the callee; this enables reshaping of co-array

arguments. Future work aims to support inference of the interface for functions defined in

the same file.

cafc replaces a co-array argument passed by co-array by two arguments: one is an

array argumentcoArrayLocal, corresponding to the local co-array data; the other,coAr-

rayHandle, corresponds to an opaque co-array handle. For accesses to local data,coAr-

rayLocal is used; for communication,coArrayHandleis passed as an argument to runtime

calls. Future work is aimed at removing thecoArrayHandleand have the runtime determine

the co-array memory based on the address of the co-array local part; this would simplify

the interoperability ofcafc-compiled CAF code with other SPMD parallel programming

models, such as MPI and UPC.

4.5 Synchronization

To support point-to-point synchronization in CAF (sync notify andsync wait) us-

ing the ARMCI runtime library, we collaborated with the developers of ARMCI on the

design of suitablearmci notify andarmci wait primitives. ARMCI ensures that

if a blocking or non-blockingPUT to a remote process image is followed by a notify to

the same process image, then the destination image receivesthe notification after thePUT

operation has completed. While ARMCI supports non-blocking communication, on some

architectures, the implementation ofarmci notify itself is blocking. This limits the

overlap of communication and computation if a CAF programmer writes a non-blocking

write to a remote co-array and notifies the destination process image immediately there-

after.

To supportsync notify andsync wait in CAF using the GASNet library, while

ensuring the communication completion semantics, we implemented support for this primi-

tives in thecafc runtime system. For a parallel execution of a CAF program onP images,

cafc uses three arrays, as shown in Figure 9.1

The locationsent[p] stores the number of notifiessentto processorp; received[p]
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long sent[P];
long received[P];
long waited[P];

Figure 4.2: cafc-runtime data structure used to implement the

sync notify/sync wait primitives.

stores the notifies countreceivedby the current process image fromp, whilewaited[p]

stores the number of notifiesexpectedby the current processor from imagep. Thecafc

runtime collects a list of all outstanding communication requests. Upon the execution of a

sync notify(p) by processorq, thecafc runtime enforces the completion of all out-

standing requests to processorp, after which it incrementssent[p] on q and then copies

its contents intoreceived[q] on processorp. Upon the execution of async wait(q)

by processorp, the executing process image incrementswaited[q], then spin waits until

received[q] exceedswaited[q].

To maximize the overlap of communication and computation,sync notify should

have a non-blocking implementation as well. In chapter 11 weshow that blocking notifies

constitute a scalability impediment.

4.6 Communication Libraries

For performance portability reasons, we chose to engineercafc on top of portable, one-

sided communication libraries. In Section 2.1.2 we presented the capabilities of one-sided

communication libraries such as ARMCI and GASNet. Thecafc runtime can utilize

effectively either of the two communication libraries.

4.7 cafc Status

At the time of this writing,cafc supports COMMON, SAVE, and ALLOCATABLE co-

arrays of primitive and user-defined types, passing of co-array arguments, co-arrays with

multiple co-dimensions, co-array communication using array sections, the CAF synchro-
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nization primitives and most of the CAF intrinsic functions. The following features of CAF

are currently not supported: triplets in co-dimensions, and parallel I/O. Ongoing work is

aimed at removing these limitations.cafc compiles natively and runs on the following

architectures: Pentium clusters with Ethernet interconnect, Itanium2 clusters with Myrinet

or Quadrics interconnect, Alpha clusters with Quadrics interconnect, SGI Origin 2000 and

SGI Altix 3000, Opteron clusters with Infiniband interconnect. Future work aims to port

cafc onto very large scale systems including BlueGene/L and CrayXT3.
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Chapter 5

Optimizing the Performance of CAF Programs

To harness the power of existing parallel machines, one needs to achieve both scalar per-

formance and communication performance.

To achieve high scalar performance when employing source-to-source translation, we

need to generate local code amenable to optimization by a backend Fortran compiler. Dur-

ing experiments withcafc-compiled codes, we refined the co-array representation for

local accesses and designed a transformation, procedure splitting, necessary to achieve

good local performance. In this chapter we describe procedure splitting, a transformation

necessary to achieve good scalar performance, then compareFortran 90 representations of

COMMON block and SAVE co-arrays on scalable shared-memory multiprocessors to find

the one that yields superior performance for local computation. We report our findings for

two NUMA SGI platforms (Altix 3000 and Origin 2000) and theircorresponding compilers

(Intel and SGI MIPSPro Fortran compilers). An important finding is that no single Fortran

90 co-array representation and code generation strategy yields the best performance across

all architectures and Fortran 90 compilers.

To obtain communication performance, we need to increase communication granular-

ity and overlap computation and communication. Communication vectorization in CAF

codes can be expressed at source level, using the Fortran 95 array section syntax. Another

optimization is communication packing, and we present several alternatives for perform-

ing it. To achieve communication and computation overlap, we use hints for issuing of

non-blocking communication.

An appealing characteristic of CAF is that a CAF compiler canautomatically tailor code

to a particular architecture and use whatever co-array representations, local data access
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methods, and communication strategies are needed to deliver the best performance.

5.1 Procedure Splitting

In early experiments comparing the performance of CAF programs compiled bycafc

with the performance of Fortran+MPI versions of the same programs, we observed that

loops accessing local co-array data in the CAF programs wereoften significantly slower

than the corresponding loops in the Fortran+MPI code, even though the source code for

the computational loops were identical. Consider the following lines that are common to

both the CAF and Fortran+MPI versions of thecompute rhs subroutine of the NAS BT

benchmark. (NAS BT is described in Section 6.3.)

rhs(1,i,j,k,c) = rhs(1,i,j,k,c) + dx1tx1 * &

(u(1,i+1,j,k,c) - 2.0d0*u(1,i,j,k,c) + &

u(1,i-1,j,k,c)) - &

tx2 * (u(2,i+1,j,k,c) - u(2,i-1,j,k,c))

In both the CAF and Fortran+MPI sources,u andrhs reside in a single COMMON block.

The CAF and Fortran+MPI versions of the program declare identical data dimensions for

these variables, except that the CAF code adds a single co-dimension tou andrhs by ap-

pending a “[*]” to the end of its declaration. As described in Section 4.2,cafc rewrites

the declarations of theu andrhs co-arrays with co-array descriptors that use a deferred-

shape representation for co-array data. References tou andrhs are rewritten to use For-

tran 90 pointer notation as shown here:

rhs%ptr(1,i,j,k,c) = rhs%ptr(1,i,j,k,c) + dx1tx1 * &

(u%ptr(1,i+1,j,k,c) - 2.0d0*u%ptr(1,i,j,k,c) + &

u%ptr(1,i-1,j,k,c)) - &

tx2 * (u%ptr(2,i+1,j,k,c) - u%ptr(2,i-1,j,k,c))

Our experiments showed that the performance differences weobserved between the

cafc-generated code and its Fortran+MPI counterpart result in part from the fact that the

Fortran 90 compilers we use to compilecafc’s generated code conservatively assume
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that the pointersrhs%ptr andu%ptr might alias one another.∗ Overly conservative

assumptions about aliasing inhibit optimizations.

We addressed this performance problem by introducing an automatic, demand-driven

procedure-splitting transformation. We split each procedure that accesses SAVE or COM-

MON co-array variables into a pair of outer and inner procedures†. We apply this transfor-

mation prior to any compilation of co-array features. Pseudo-code in Figure 5.1 illustrates

the effect of the procedure-splitting transformation.

The outer procedure retains the same procedure interface asthe original procedure. The

outer procedure’s body contains solely its data declarations, an interface block describing

the inner procedure, and a call to the inner procedure. The inner procedure is created by

applying three changes to the original procedure. First, its argument list is extended to ac-

count for the SAVE and COMMON co-arrays that are now receivedas arguments. Second,

explicit-shape co-array declarations are added for each additional co-array received as an

argument. Third, each reference to any SAVE or COMMON co-array now also available as

a dummy argument is replaced to use the dummy argument version instead. In Figure 5.1,

this has the effect of rewriting the reference toc(50) in fwith a reference toc arg(50)

in f inner.

After procedure splitting, the translation process for implementing co-arrays, as de-

scribed in chapter 4, is performed. The net result after splitting and translation is that within

the inner procedure, SAVE and COMMON co-arrays that are now handled as dummy

arguments are represented using explicit-shape arrays rather than deferred-shape arrays.

Passing these co-arrays as arguments to the inner procedureto avoid accessing SAVE and

COMMON co-arrays using Fortran 90 pointers has several benefits. First, Fortran com-

pilers may assume that dummy arguments to a procedure do not alias one another; thus,

∗Compiling thecafc-generated code for the Itanium2 using Intel’sifort compiler (version 8.0) with

the-fno-alias flag removed some of performance difference in computational loops between the CAF

and Fortran+MPI codes.
†Our prototype currently supports procedure splitting onlyfor subroutines; splitting for functions will be

added soon.
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subroutine f(a,b)

real a(10)[*], b(100), c(200)[*]

save c

... = c(50) ...

end subroutine f

(a) Original procedure

subroutine f(a,b)

real a(10)[*], b(100), c(200)[*]

save c

interface

subroutine f_inner(a,b,c_arg)

real a[*], b, c_arg[*]

end subroutine f_inner

end interface

call f_inner(a,b,c)

end subroutine f

subroutine f_inner(a,b,c_arg)

real a(10)[*], b(100), c_arg(200)[*]

... = c_arg(50) ...

end subroutine f_inner

(b) Outer and inner procedures after splitting.

Figure 5.1: Procedure splitting transformation.

these co-arrays are no longer assumed to alias one another. Second, within the inner proce-

dure, the explicit-shape declarations for co-array dummy arguments retain explicit bounds

that are otherwise obscured when using the deferred-shape representation for co-arrays in

the generated code that was described in Section 4.2. Third,since local co-array data is

referenced in the inner procedure as an explicit-shape array, it is known to be contiguous,

whereas co-arrays referenced through Fortran 90 pointers may be strided. Our experiments

also showed that knowing that data is contiguous improves software prefetching (as well as

write hinting in Compaq’s Fortran 90 compiler). The overallperformance benefits of this
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transformation are evaluated in Section 6.1.

5.2 Representing Co-arrays for Efficient Local Computation

To achieve the best performance for CAF applications, it is critical to support efficient com-

putation on co-array data. Becausecafc uses source-to-source translation into Fortran 90,

this leads to the question of what is the best set of Fortran 90constructs for representing

and referencing co-array data. There are two major factors affecting the decision: (i) how

well a particular back-end Fortran 90 compiler optimizes different kinds of data references,

and (ii) hardware and operating system capabilities of the target architecture.

Most Fortran compilers effectively optimize references toCOMMON block and SAVE

variables, but fall short optimizing the same computation when data is accessed using Cray

or Fortran 90 pointers. The principal stumbling block is alias analysis in the presence of

pointers. COMMON block and SAVE variables as well as subroutine formal arguments in

Fortran 90 cannot alias, while Cray and Fortran 90 pointers can. When compiling a CAF

program,cafc knows that in the absence of Fortran EQUIVALENCE statementsCOM-

MON block and SAVE co-arrays occupy non-overlapping regions of memory; however,

this information is not conveyed to a back-end compiler ifcafc generates code to access

local co-array data through pointers. Conservative assumptions about aliases cause back-

end compilers to forgo critical performance optimizationssuch as software pipelining and

unroll-and-jam, among others. Some, but not all, Fortran 90compilers have flags that en-

able users to specify that pointers do not alias, which can ameliorate the effects of analysis

imprecision.

Besides the aliasing problem, using Fortran 90 pointers to access data can increase

register pressure and inhibit software prefetching. The shape of a Fortran 90 pointer is

not known at compile time; therefore, bounds and strides arenot constant and thus occupy

extra registers, increasing register pressure. Also a compiler has no knowledge whether

the memory pointed to by a Fortran 90 pointer is contiguous orstrided, which complicates

generation of software prefetch instructions.
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type t1
real, pointer :: local(:,:)

end type t1
type (t1) ca

(a) Fortran 90 pointer representation.

type t2
real :: local(10,20)

end type t2
type (t2), pointer :: ca

(b) Pointer to structure representation.

real :: a local(10,20)
pointer (a ptr, a local)

(c) Cray pointer representation.

real :: ca(10,20)
common /ca cb/ ca

(d) COMMON block representation.

subroutine foo(...)
real a(10,20)[*]
common /a cb/ a
...

end subroutine foo

(e) Original subroutine.

! subroutine-wrapper
subroutine foo(...)
! F90 pointer representation of

a
...
call foo body(ca%local(1,1),...)

end subroutine foo

! subroutine-body
subroutine foo body(a local,...)
real :: a local(10,20)
...

end subroutine foo body

(f) Parameter representation.

Figure 5.2: Fortran 90 representations for co-array local data.

The hardware and the operating system impose extra constraints on whether a particular

co-array representation is appropriate. For example, on a shared-memory system a co-

array should not be represented as a Fortran 90 COMMON variable if a COMMON block

cannot be mapped into multiple process images. Below we discuss five possible Fortran 90

representations for the local part of a co-array variablereal a(10,20)[*].

Fortran 90 pointer. Figure 5.2(a) shows the representation of co-array data first used by

cafc. At program launch,cafc’s run-time system allocates memory to hold10 × 20

array of double precision numbers and initializes theca%local field to point to it.

This approach enabled us to achieve performance roughly equal to that of MPI on an

Itanium2 cluster with a Myrinet2000 interconnect using theIntel Fortran compiler v7.0

(using a “no-aliasing” compiler flag) to compilecafc’s generated code [56]. Other com-

pilers do not optimize Fortran 90 pointers as effectively. Potential aliasing of Fortran 90

or Cray pointers inhibits some high-level loop transformations in the HP Fortran compiler

for the Alpha architecture. The absence of a flag to signal theHP Alpha Fortran compiler

that pointers don’t alias forced us to explore alternative strategies for representing and ref-
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erencing co-arrays. Similarly, on the SGI Origin 2000, the MIPSPro Fortran 90 compiler

does not optimize Fortran 90 pointer references effectively.

Fortran 90 pointer to structure. In contrast to the Fortran 90 pointer representation

shown in Figure 5.2(a), thepointer-to-structureshown in Figure 5.2(b) conveys constant

array bounds and contiguity to the back-end compiler.

Cray pointer. Figure 5.2(c) shows how a Cray pointer can be used to represent the local

portion of a co-array. This representation has similar properties to the pointer-to-structure

representation. Though the Cray pointer is not a standard Fortran 90 construct, many For-

tran 90 compilers support it.

COMMON block. On the SGI Altix and Origin architectures, the local part of aco-

array can be represented as a COMMON variable in each SPMD process image (as shown

in Figure 5.2(d)) and mapped into remote images as symmetricdata objects using SHMEM

library primitives. References to local co-array data are expressed as references to COM-

MON block variables. This code shape is the most amenable to back-end compiler op-

timizations and results in the best performance for local computation on COMMON and

SAVE co-array variables (see Section 5.3).

Subroutine parameter representation. To avoid pessimistic assumptions about alias-

ing, a procedure splittingtechnique can be used. If one or more COMMON block or

SAVE co-arrays are accessed intensively within a procedure, the procedure can be split

into wrapper and body procedures (see Figures 5.2(e) and 5.2(f)). The wrapper proce-

dure passes all (non-EQUIVALENCEd) COMMON block and SAVE co-arrays used in the

original subroutine to the body procedure as explicit-shape arguments‡; within the body

procedure, these variables are then referenced as routine arguments. This representation

enablescafc to pass bounds and contiguity information to the back-end compiler. The

‡Fortran 90 argument passing styles are described in detail elsewhere [7].
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procedure splitting technique proved effective for both the HP Alpha Fortran compiler and

the Intel Fortran compiler.

5.3 Evaluation of Representations for Local Accesses

Currently,cafc generates code that uses Fortran 90 pointers for referencesto local co-

array data. To access remote co-array elements,cafc can either generate ARMCI calls

or initialize Fortran 90 pointers for fine-grain load/storecommunication. Initialization of

pointers to remote co-array data occurs immediately prior to statements referencing non-

local data; pointer initialization is not yet automatically hoisted out of loops. To evalu-

ate the performance of alternate co-array representationsand communication strategies,

we hand-modified code generated bycafc or hand-coded them. For instance, to eval-

uate the efficiency of using SHMEM instead of ARMCI for communication, we hand-

modifiedcafc-generated code to useshmem put/shmem get for both fine-grain and

coarse-grain accesses.

We used two NUMA platforms for our experiments: an SGI Altix 3000§ and an SGI

Origin 2000¶. We used the STREAM benchmark to determine the best co-arrayrepresen-

tation for local and remote accesses. To determine the highest-performing representation

for fine-grain remote accesses we studied the Random Access and Spark98 benchmarks.

To investigate the scalability of CAF codes with coarse-grain communication, we show

results for the NPB benchmarks SP and MG.

The STREAM [134] benchmark is a simple synthetic benchmark program that mea-

sures sustainable memory bandwidth in MB/s (106 bytes/s) and the corresponding compu-

tation rate for simple vector kernels. The top half of Figure5.3 shows vector kernels for

a Fortran 90 version of the benchmark. The size of each array should exceed the capacity

§Altix 3000: 128 Itanium2 1.5GHz processors with 6MB L3 cache, and 128 GB RAM, running the

Linux64 OS with the 2.4.21 kernel and the 8.0 Intel compilers
¶Origin 2000: 16 MIPS R12000 processors with 8MB L2 cache and 10 GB RAM, running IRIX 6.5 and

the MIPSpro Compilers version 7.3.1.3m
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of the last level of cache. The performance of compiled code for the STREAM benchmark

also depends upon the quality of the code’s instruction stream‖.

DO J=1, N

C(J)=A(J)

END DO

(a) Copy

DO J=1, N

B(J)=s*C(J)

END DO

(b) Scale

DO J=1, N

C(J)=A(J)+B(J)

END DO

(c) Add

DO J=1, N

A(J)=B(J)+s*C(J)

END DO

(d) Triad

DO J=1, N

C(J)=A(J)[p]

END DO

(e) CAF Copy

DO J=1, N

B(J)=s*C(J)[p]

END DO

(f) CAF Scale

DO J=1, N

C(J)=A(J)[p]+B(J)[p]

END DO

(g) CAF Add

DO J=1, N

A(J)=B(J)[p]+s*C(J)[p]

END DO

(h) CAF Triad

Figure 5.3: The STREAM benchmark kernels (F90 & CAF).

We designed two CAF versions of the STREAM benchmark: one to evaluate the repre-

sentations for local co-array accesses, and a second to evaluate the remote access code for

both fine-grain accesses and bulk communication. Table 5.1 presents STREAM bandwidth

measurements on the SGI Altix 3000 and the SGI Origin 2000 platforms.

Evaluation of local co-array access performance.To evaluate the performance of local

co-array accesses, we adapted the STREAM benchmark by declaring A, B andC as co-

arrays and keeping the kernels from the top half of Figure 5.3intact. We used the Fortran

90 version of STREAM with the arrays A, B and C in a COMMON blockas a baseline for

comparison The results are shown in the local access part of the Table 5.1. The results for

the COMMON block representation are the same as the results of the original Fortran 90.

The Fortran 90 pointer representation without the “no-aliasing” compiler flag yields only

30% of the best performance for local access; it is not alwayspossible to use no-aliasing

‖On an SGI Altix, we use-override limits -O3 -tpp2 -fnoalias for the Intel 8.0 compiler.

On the Origin, we use-64 -O3 for the MIPSpro compiler.
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flags because user programs might have aliasing unrelated toco-array usage. On both archi-

tectures, the results show that the most efficient representation for co-array local accesses

is as COMMON block variables. This representation enables the most effective optimiza-

tion by the back-end Fortran 90 compiler; however, it can be used only for COMMON and

SAVE co-arrays; a different representation is necessary for allocatable co-arrays.

Evaluation of remote co-array access performance.We evaluated the performance of

remote reads by modifying the STREAM kernels so that A,B,C are co-arrays, and the ref-

erences on the right-hand side are all remote. The resultingcode is shown in the bottom

half of Figure 5.3. We also experimented with a bulk version,in which the kernel loops

are written in Fortran 90 array section notation. The results presented in the Table 5.1 cor-

respond to the following code generation options (for both fine-grain and bulk accesses):

the library-based communication with temporary buffers using ARMCI calls, Fortran 90

pointers, Fortran 90 pointers with the initialization hoisted out of the kernel loops, library-

based communication using SHMEM primitives, Cray pointers, Cray pointers with hoisted

initialization without the no-aliasing flag, Cray pointerswith hoisted initialization, and a

vector of Fortran 90 pointers to remote data. The next resultcorresponds to a hybrid repre-

sentation: using the COMMON block representation for co-array local accesses and Cray

pointers for remote accesses. The last result corresponds to an OpenMP implementation of

the STREAM benchmark coded in a similar style to the CAF versions; this is provided to

compare the CAF versions against an established shared memory programming model.

The best performance for fine-grain remote accesses is achieved by the versions that

use Cray pointers or Fortran 90 pointers to access remote data with the initialization of

the pointers hoisted outside loops. This shows that hoisting initialization of pointers to

remote data is imperative for both Fortran 90 pointers and Cray pointers. Using the vector

of Fortran 90 pointers representation uses a simpler strategy to hoist pointer initialization

that requires no analysis, yet achieves acceptable performance. Using a function call per

each fine-grain access incurs a factor of 24 performance degradation on Altix and a factor

of five on the Origin.
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SGI Altix 3000 SGI Origin 2000

Program representation Copy Scale Add Triad Copy Scale Add Triad

Fortran, COMMON block arrays 3284 3144 3628 3802 334 293 353 335

Local access, F90 pointer, w/o no-aliasing flag 1009 929 1332 1345 323 276 311 299

Local access, F90 pointer 3327 3128 3612 3804 323 277 312 298

Local access, F90 pointer to structure 3209 3107 3629 3824 334 293 354 335

Local access, Cray pointer 3254 3061 3567 3716 334 293 354 335

Local access, split procedure 3322 3158 3611 3808 334 288 354 332

Local access, vector of F90 pointers 3277 3106 3616 3802 319 288 312 302

Remote access, general strategy 33 32 24 24 11 11 8 8

Remote access bulk, general strategy 2392 1328 1163 1177 273 115 99 98

Remote access, F90 pointer 44 44 34 35 10 10 7 7

Remote access bulk, F90 pointer 1980 2286 1997 2004 138 153 182 188

Remote access, hoisted F90 pointer 1979 2290 2004 2010 294 268 293 282

Remote access, shmemget 104 102 77 77 72 70 57 56

Remote access, Cray pointer 71 69 60 60 26 26 19 19

Remote access bulk, Cray ptr 2313 2497 2078 2102 346 294 346 332

Remote access, hoisted Cray pointer, w/o no-aliasing flag2310 2231 2059 2066 286 255 283 275

Remote access, hoisted Cray pointer 2349 2233 2057 2073 346 295 347 332

Remote access, vector of F90 pointers 2280 2498 2073 2105 316 291 306 280

Remote access, hybrid representation 2417 2579 2049 2062 350 295 347 333

Remote access, OpenMP 2397 2307 2033 2052 312 301 317 287

Table 5.1: Bandwidth for STREAM in MB/s on the SGI Altix 3000 and the SGI Origin

2000.

For bulk access, the versions that use Fortran 90 pointers orCray pointers perform

better for the kernels Scale, Add and Triad than the general version (1.5-2 times better on

an SGI Altix and 2.5-3 times better on an SGI Origin), which uses buffers for non-local

data. Copying into buffers degrades performance significantly for these kernels. For Copy,

the general version does not use an intermediate buffer; instead, it usesmemcpy to transfer

the data directly into theC array and thus achieves high performance.

We implemented an OpenMP version of STREAM that performs similar remote data

accesses. On and SGI Altix, the OpenMP version delivered performance similar to the
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CAF implementation for the Copy, Add, and Triad kernels, and90% for the Scale kernel.

On an SGI Origin, the OpenMP version achieved 86-90% of the performance of the CAF

version.

In conclusion, for top performance on the Altix and Origin platforms, we need dis-

tinct representations for co-array local and remote accesses. For COMMON and SAVE

variables, local co-array data should reside in COMMON blocks or be represented as sub-

routine dummy arguments; for remote accesses,cafc should generate communication

code based on Cray pointers with hoisted initialization.

5.4 Strided vs. Contiguous Transfers

It is well-known that transferring one large message instead of many small messages in gen-

eral is much cheaper on loosely-coupled architectures. With the column-major layout of

co-arrays, one language-level communication event, such asa(i,1:n)[p]=b(j,1:n),

might lead ton one-element transfers, which can be very costly. To overcome this perfor-

mance hurdle, an effective solution is to pack strided data on the source, and unpack it

on the destination. For example, for a PUT of a strided co-array section, which is non-

contiguous in memory, it may be beneficial to pack the sectionon the sender and unpack

it in the corresponding memory locations on the receiver. There can be several levels in

the runtime environment where the data can be packed and unpacked to ensure efficient

transfers.

In the CAF program This approach requires some effort on the programmer’s sideand

can preclude CAF compiler from optimizing code for tightly-coupled architectures, such

as the Cray X1.

By the CAF compiler In a one-sided communication programming paradigm, a major

difficulty to pack / unpack data on this level is to transform one-sided communication into

two-sided. For a PUT, the CAF compiler can easily generate packing code, but it is difficult

to infer where in the program to insert the unpacking code so the receiving image unpacks

data correctly. Similar complications arise for GETs. If Active Messages [76] are supported
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on a target platform,cafc could potentially generate packing code for the source process

and an unpacking code snippet to execute on the destination.

In the runtime library This is the most convenient level in the runtime environmentto

perform packing / unpacking of strided communication. An optimized runtime library can

use a cost model to decide if it is beneficial to pack data for a strided transfer. It also knows

how to unpack data on the remote image, and it can take advantage of hardware specific

features, e.g., RDMA transfers. The ARMCI library used by our CAF compiler runtime

library already performs packing/unpacking of data for Myrinet. However, we discovered

that it does not currently do packing for Quadrics. Instead,ARMCI relies on the Quadrics

driver support for strided transfers, which deliver poor performance.

On a Myrinet network, we determined that the ARMCI packing/unpacking of strided

transfers outperforms a strategy based solely on active messages. The explanation for this is

that for large messages ARMCI packs chunks of the transfer, sends them to the destination,

where it executes unpacking code. By performing effective pipelining of message chunks,

ARMCI overlaps packing, communication and unpacking for different chunks. An active-

message based solution will not benefit of this overlap and thus lose in performance to

ARMCI.

5.5 Hints for Non-blocking Communication

Overlapping communication and computation is an importanttechnique for hiding inter-

connect latency as well as a means for tolerating asynchronybetween communication part-

ners. However, as CAF was originally described [156], all communication must complete

before each procedure call in a CAF program. In a study of our initial implementation of

cafc, we found that obeying this constraint and failing to overlap communication with

independent computation hurt performance [56].

Ideally, a CAF compiler could always determine when it is safe to overlap communi-

cation and computation and to generate code automatically that does so. However, it is not

always possible to determine at compile time whether a communication and a computation
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may legally be overlapped. For instance, if the computationand/or the communication

use indexed subscripts, making a conservative assumption about the values of indexed sub-

scripts may unnecessarily eliminate the possibility of communication/computation overlap.

Also, without whole-program analysis in a CAF compiler, in the presence of separate com-

pilation one cannot determine whether it is legal to overlapcommunication with a called

procedure.

To address this issue, we believe it is useful to provide a mechanism to enable knowl-

edgeable CAF programmers to provide hints as to when communication may be overlapped

with computation. Such a mechanism serves two purposes: it enables overlap when con-

servative analysis would not, and it enables overlap incafc-generated code today before

cafc supports static analysis of potential communication/computation overlap. While ex-

posing the complexity of non-blocking communication to users is not ideal, we believe it is

pragmatic to offer a mechanism to avoid performance bottlenecks rather than forcing users

to settle for lower performance.

To support communication/computation overlap in code generated bycafc, we im-

plemented support for three intrinsic procedures that enable programmers to demarcate the

initiation and signal the completion of non-blocking PUTs.We use a pair of intrinsic calls

to instruct thecafc run-time system to treat all PUT operations initiated between them as

non-blocking. We show this schematically below.

region_id = open_nb_put_region()

...

Put_Stmt_1

...

Put_Stmt_N

...

call close_nb_put_region(region_id)

In our current implementation of thecafc runtime, only one non-blocking region may

be open at any particular point in a process image’s execution. Each PUT operation that

executes when a non-blocking region is open is associated with theregion id of the

open non-blocking region. It is a run-time error to close anyregion other than the one
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currently open. Eventually, each non-blocking region initiated must be completed with the

call shown below.

call complete_nb_put_region(region_id)

The completion intrinsic causes a process image to wait at this point until the completion

of all non-blocking PUT operations associated withregion id that the process image

initiated. It is a run-time error to complete a non-blockingregion that is not currently

pending completion.

Using these hints, thecafc run-time system can readily exploit non-blocking com-

munication for PUTs and overlap communication with computation. Overlapping GET

communication associated with reads of non-local co-arraydata with computation would

also be useful. We are currently exploring how one might sensibly implement support

for overlapping GET communication with computation, either by initiating GETs early or

delaying computation that depends upon them.
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Chapter 6

An Experimental Evaluation of CAF Performance

In this chapter we describe our implementation strategy forNAS CG, BT, SP and LU, and

present performance results on multiple architectures. A major result is that CAF codes

can match the performance of hand-tuned MPI benchmarks on multiple platforms. We also

evaluate the impact of the scalar and communication performance optimizations described

in Chapter 5.

6.1 Experimental Evaluation

We compare the performance of the codecafc generates from CAF with hand-coded MPI

implementations of the NAS MG, CG, BT, SP and LU parallel benchmark codes. The

NPB codes are widely regarded as useful for evaluating the performance of compilers on

parallel systems. For our study, we used MPI versions from the NPB 2.3 release. Sequential

performance measurements used as a baseline were performedusing the NPB 2.3-serial

release.

For each benchmark, we compare the parallel efficiency of MPIandcafc-generated

code for each benchmark. We compute parallel efficiency as follows. For each parallel

versionρ, the efficiency metric is computed as ts
P×tp(P,ρ)

. In this equation,ts is the execution

time of the original sequential version implemented by the NAS group at the NASA Ames

Research Laboratory;P is the number of processors;tp(P, ρ) is the time for the parallel

execution onP processors using parallelizationρ. Using this metric, perfect speedup would

yield efficiency 1.0 for each processor configuration. We useefficiency rather than speedup

or execution time as our comparison metric because it enables us to accurately gouge the

relative performance of multiple benchmark implementations across theentire range of



70

processor counts.

To evaluate the performance of CAF programs optimized bycafc we performed ex-

periments on three cluster platforms. The first platform we used was the Alpha cluster at

the Pittsburgh Supercomputing Center. Each node is an SMP with four 1GHz processors

and 4GB of memory. The operating system is OSF1 Tru64 v5.1A. The cluster nodes are

connected with a Quadrics interconnect (Elan3). We used theCompaq Fortran 90 compiler

V5.5. The second platform was a cluster of HP zx6000 workstations interconnected with

Myrinet 2000. Each workstation node contains two 900MHz Intel Itanium 2 processors

with 32KB of L1 cache, 256KB of L2 cache, and 1.5MB of L3 cache,4-8GB of RAM,

and the HP zx1 chipset. Each node is running the Linux operating system (kernel version

2.4.18-e plus patches). We used the Intel Fortran compiler version 8.0 for Itanium as our

Fortran 90 back-end compiler. The third platform was a cluster of HP Long’s Peak dual-

CPU workstations at the Pacific Northwest National Laboratory. The nodes are connected

with Quadrics QSNet II (Elan 4). Each node contains two 1.5GHz Itanium2 processors

with 32KB/256KB/6MB L1/L2/L3 cache and 4GB of RAM. The operating system is Red

Hat Linux (kernel version 2.4.20). The back-end compiler isthe Intel Fortran compiler

version 8.0. For all three platforms we used only one CPU per node to avoid memory

contention.

In the following sections, we briefly describe the NAS benchmarks used in our evalua-

tion, the key features of their MPI and CAF parallelizationsand compare the performance

of the CAF and MPI implementations on both architectures studied.

6.2 NAS CG

The MPI version of NAS CG is described in section 3.2.1. Our tuned CAF version of

NAS CG does not differ much from the MPI hand-coded version. In fact, we directly con-

verted two-sided MPI communication into equivalent calls to notify/wait and a vectorized

one-sided get communication event. Figure 6.2 shows a typical fragment of our CAF par-

allelization using notify/wait synchronization. Our experiments showed that for this code,
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Figure 6.1: Comparison of MPI and CAF parallel efficiency forNAS CG on Al-

pha+Quadrics, Itanium2+Myrinet and Itanium2+Quadrics clusters.

replacing the co-array remote read (get) operation with a co-array remote write (PUT) had

a negligible effect on performance because of the amount of synchronization necessary to

preserve data dependences.

In initial experimentation with our CAF version of CG on various numbers of proces-

sors, we found that on less than eight processors, performance was significantly lower than

its MPI counterpart. In our first CAF implementation of CG, the receive array q was a

common block variable, allocated in the static data by the compiler and linker. To perform

the communication shown in Figure 6.2 our CAF compiler prototype allocated a tempo-

rary buffer in memory registered with ARMCI so that the Myrinet hardware could initiate

a DMA transfer. After theget was performed, data was copied from the temporary buffer

into the q array. For runs on a small number of processors, thebuffers are large. More-

over, the registered memory pool has the starting address independent of the addresses of
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! notify our partner that we are here and wait for

! him to notify us that the data we need is ready

call sync_notify(reduce_exch_proc(i)+1)

call sync_wait(reduce_exch_proc(i)+1)

! get data from our partner

q(n1:n2) = w(m1:m1+n2-n1)[reduce_exch_proc(i)]

! synchronize again with our partner to

! indicate that we have completed our exchange

! so that we can safely modify our part of w

call sync_notify(reduce_exch_proc(i)+1)

call sync_wait(reduce_exch_proc(i)+1)

! local computation

... use q, modify w ...

Figure 6.2: A typical fragment of optimized CAF for NAS CG.

the common blocks. Using this layout of memory and a temporary communication buffer

caused the number of L3 cache misses in our CAF code to be up to afactor of three larger

than for the corresponding MPI code, resulting in performance that was slower by a factor

of five. By converting q (and other arrays used in co-array expressions) to co-arrays, it

moved their storage allocation into the segment with co-array data (reducing the potential

for conflict misses) and avoided the need for the temporary buffer. Overall, this change

greatly reduced L3 cache misses and brought the performanceof the CAF version back to

level of the MPI code. Our lesson from this experience is thatmemory layout of communi-

cation buffers, co-arrays, and common block/save arrays might require thorough analysis

and optimization.

To summarize, the important CAF optimizations for CG are: communication vector-

ization, synchronization strength-reduction and data layout management for co-array and

non-coarray data. Here we describe experiments with NAS CG class C (size 150000, 75

iterations). Figure 6.1 shows that on the Alpha+Quadrics and the Itanium2+Quadrics clus-

ters our CAF version of CG achieves comparable performance to that of the MPI version.

The CAF version of CG consistently outperforms the MPI version for all the parallel runs
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on Itanium2+Myrinet.

Experiments with CG have showed that using PUTs instead of GETs on the Quadrics

platforms yields performance improvements of up to 8% for large scale jobs on the Alpha

+ Quadrics platform and up to 3% on the Itanium2+Quadrics platform.

6.3 NAS SP and BT
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Figure 6.3: Comparison of MPI and CAF parallel efficiency forNAS BT on Al-

pha+Quadrics, Itanium2+Myrinet and Itanium2+Quadrics clusters.

An overview of the MPI versions of NAS BT and SP is described insection 3.2.1. Our

CAF implementations of the BT and SP benchmarks was inspiredby the MPI version.

When converting from MPI-based communication to co-arrays, two major design choices

were investigated. First, we could use the same data distribution (same data structures)

as the MPI version, but use co-arrays instead of regular MPI buffers. The communica-

tion is then expressed naturally in co-array syntax by describing the data movement from

the co-array buffer on the sender to the co-array buffer on the receiver. The second alter-
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Figure 6.4: Comparison of MPI and CAF parallel efficiency forNAS SP on Al-

pha+Quadrics, Itanium2+Myrinet and Itanium2+Quadrics clusters.

lhs( 1:BLOCK_SIZE, 1:BLOCK_SIZE,

cc, -1,

0:JMAX-1, 0:KMAX-1,

cr) [successor(1)] =

lhs( 1:BLOCK_SIZE, 1:BLOCK_SIZE,

cc, cell_size(1,c)-1,

0:JMAX-1, 0:KMAX-1, c)

(a) NAS BT

.... pack into out_buffer_local......

out_buffer(1:p, stage+1:stage+1)

[successor(1)] =

out_buffer_local(1:p, 0:0)

.... unpack from out_buffer..........

(b) NAS SP

Figure 6.5: Forward sweep communication in NAS BT and NAS SP.

native follows more closely the spirit of the language. The working data itself is stored

into co-arrays, and then the communication is expressed using co-array syntax, without

any intermediate buffers for packing and unpacking. Each design choice influences the

synchronization required to achieve correct results.

The CAF implementation for BT and SP inherits the multipartitioning scheme used by



75

the MPI version. In BT, the main working data resides in co-arrays, while in SP it resides

in non-shared arrays. For BT, during the boundary conditioncomputation and during the

forward sweep for each of the axes, in the initial version no buffers were used for packing

and unpacking, as shown in Figure 6.5(a); however we had to follow PUTs with notifies,

to let the other side know the data is available. A second version performed source-level

communication packing. On the contrary, in SP all the communication is performed via

co-array buffers (see Figure 6.5(b)). In the backward sweep, both BT and SP use auxiliary

co-array buffers to communicate data.

In our CAF implementation of BT, we had to consider the trade-off between the amount

of memory used for buffers and the amount of necessary synchronization. By using more

buffer storage we were able to eliminate both output and anti-dependences due to buffer

reuse, thus obviating the need for extra synchronization. We used a dedicated buffer for

each communication event during the sweeps, for a total buffer size increase by a factor of

square root of the number of processors. Experimentally we found that this was beneficial

for performance while the memory increase was acceptable. To yield better performance

on cluster architectures, we manually converted co-arrayGETs intoPUTs. Another issued

we faced was determining the correct offset in the remote co-array buffer where to put the

data. In order to avoid extra communication necessary to retrieve the offsets, our CAF

version exchanged this information during the program initialization stage. This stage does

not appear in the time measurements, which only consider thetime-steps.

It is worth mentioning that the initial version of CAF benchmark was developed on

a Cray T3E, and our intended platform was an Itanium2 clusterwith Myrinet intercon-

nect. Several features available on the Cray T3E, such as efficient fine-grain communica-

tion and efficient global synchronization, were not presenton clusters. In order to obtain

high-performance, we had to apply by hand the transformations such as: communication

vectorization, conversion of barriers into notifies, get toput conversion.

The performance achieved by the CAF versions of BT class C (size1623, 200 iterations)

and SP class C (size1623, 400 iterations) are presented in Figures 6.3 and 6.4. On the
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Figure 6.6: Comparison of MPI and CAF parallel efficiency forNAS LU on Al-

pha+Quadrics, Itanium2+Myrinet and Itanium2+Quadrics clusters.

Alpha+Quadrics cluster, the performance of the CAF versionof BT is comparable to that of

the MPI version. On the Itanium2+Myrinet cluster, CAF BT outperforms the MPI versions

by as much as 8% (and is comparable for 64 processors); on the Itanium2+Quadrics cluster,

our CAF version of BT exceeds the MPI performance by up to 6% (3% on 121 processors).

The CAF versions of SP is outperformed by MPI on the Alpha+Quadrics cluster by up

to 8% and Itanium2+Quadrics clusters by up to 9%. On the Itanium2+Myrinet cluster,

SP CAF exceeds the performance of MPI CAF by up to 7% (7% on 64 processors). The

best performing CAF versions of BT and SP use procedure splitting, packed PUTs and

non-blocking communication generation.

6.4 NAS LU

The MPI version of NAS LU is described in section 3.2.1. Our CAF implementation fol-

lows closely the MPI implementation. We have transformed into co-arrays the grid pa-
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Figure 6.7: Parallel efficiency for several CAF versions of NAS BT on an Alpha+Quadrics

cluster.

rameters, the field variables and residuals, the output control parameters and the Newton-

Raphson iteration control parameters. Local computation is similar to that of MPI. The

various exchange procedures use co-arrays with two co-dimensions in order to naturally

express communication with neighbors in four directions: north, east, south and west. For

example, a processor with the co-indices[row,col] will send data to[row+1,col]

when it needs to communicate to the south neighbor and to[row,col-1] for the west

neighbor.

The experimental results for the MPI and CAF versions of LU class C (1623, 250 itera-

tions) on all platforms are presented in Figure 6.6. On the Alpha+Quadrics cluster the MPI

version outperforms the CAF version by up to 9%; on the Itanium2+Myrinet cluster, MPI

LU exceeds the performance of CAF LU by as much as 13%. On the Itanium2+Quadrics

cluster, the CAF and MPI versions of LU achieve comparable performance. The best per-

forming CAF version of LU uses packed PUTs and procedure splitting.
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Figure 6.8: Parallel efficiency for several CAF versions of NAS BT on an Ita-

nium2+Myrinet cluster.

1 4 9 16 25 36 49 64 81 100121
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Number of Processors

E
ff

ic
ie

n
cy

: 
S

p
ee

d
u

p
/(

N
u

m
b

er
 o

f 
p

ro
ce

ss
o

rs
)

MPI                                                     
CAF strided Puts                                        
CAF strided Puts + procedure splitting                  
CAF packed Puts                                         
CAF packed Puts+procedure splitting                     
CAF packed Puts, non−blocking comm                      
CAF packed Puts, non−blocking comm + procedure splitting

Figure 6.9: Parallel efficiency for several CAF versions of NAS BT on an Ita-

nium2+Quadrics cluster.
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Figure 6.10: Parallel efficiency for several CAF versions ofNAS LU on an Al-

pha+Quadrics cluster.
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Figure 6.11: Parallel efficiency for several CAF versions ofNAS LU on an Ita-

nium2+Myrinet cluster.
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Figure 6.12: Parallel efficiency for several CAF versions ofNAS LU on an Ita-

nium2+Quadrics cluster.

6.5 Impact of Optimizations

In Chapter 5, we described several optimizations to improvethe performance of CAF pro-

grams: procedure splitting, issuing of non-blocking communication and communication

packing. To experimentally evaluate the impact of each optimization, we implemented

several versions of each of the NPB benchmarks presented above. In Figures 6.7, 6.9,

and 6.7 we present results on the Alpha+Quadrics, the Itanium2+Myrinet and the Ita-

nium2+Quadrics clusters for the MPI version of BT and the following BT CAF versions:

strided PUTs, strided PUTs with procedure splitting, packed PUTs, packed PUTs with

procedure splitting, packed non-blocking PUTs and packed non-blocking PUTs with pro-

cedure splitting. In Figures 6.10, 6.11, and 6.12 we presentresults on the Alpha+Quadrics,

the Itanium2+Myrinet and the Itanium+Quadrics clusters for the MPI version of LU and

the following CAF versions: strided PUTs, strided PUTs withprocedure splitting, packed

PUTs and packed PUTs with procedure splitting. For both BT and LU the communication



81

packing is performed at source level.

For BT, procedure splitting is a high-impact transformation: it improves the perfor-

mance by 13–20% on the Alpha+Quadrics cluster, by 25–55% on the Itanium2+Quadrics

cluster, and by 42–60% on the Itanium2 + Myrinet cluster. ForLU, procedure splitting

yields an improvement of 15–33% on Alpha+Quadrics and 29–42% on Itanium2 + Myrinet.

The CAF versions of BT and LU benefit significantly from the procedure splitting optimiza-

tion because SAVE and COMMON co-arrays are heavily used in local computations. For

benchmarks such as CG, MG and SP, where co-arrays are used solely for data movement

(by packing data, sending it and unpacking it on the destination) the benefits of the proce-

dure splitting are modest. In addition, procedure splitting doesn’t degrade performance for

any of the programs we used in our experiments.

For BT, non-blocking PUTs improved performance by up to 2% onthe Alpha+Quadrics

platform, by up to 7% on the Itanium2+Myrinet platform and byup to 5% on the Ita-

nium2+Quadrics platform. For MG, non-blocking PUTs improved performance by up to

3% on all platforms. For SP, non-blocking communication improved performance as much

as 8% on Itanium2+Myrinet, though only up to 2% on the Quadrics clusters.

Packing data and performing contiguous rather than stridedPUTs yields a performance

improvement on both Quadrics platforms, on which the ARMCI library does not provide

automatic packing. On the Myrinet platform, ARMCI supportsdata packing for commu-

nication, and thus there is no improvement from packing dataat source level in CAF ap-

plications. For BT CAF, the execution time is improved up to 31% on the Alpha+Quadrics

cluster and up to 30% on the Itanium2+Quadrics cluster. For LU CAF, the improvement is

up to 24% on the Alpha+Quadrics cluster and up to 37% on the Itanium2+Quadrics cluster.
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Chapter 7

Comparing the Performance of CAF and UPC Codes

In chapter 6 we have presented the impact of communication and synchronization opti-

mizations on CAF implementations of the NAS benchmarks. Communication aggregation

and generating code amenable to backend compiler optimizations are important concerns

for other PGAS languages as well. In this chapter we evaluatethe UPC implementations of

the NAS benchmarks CG and BT and show how applying source level optimizations can

improve their scalar and communication performance. The UPC programming model and

UPC compilers were reviewed in Section 2.2.1.

7.1 Methodology

To assess the ability of PGAS language implementations to deliver performance, we com-

pare the performance of CAF, UPC and Fortran+MPI implementations of the NAS Parallel

Benchmarks (NPB) CG and BT. The NPB codes are widely used for evaluating the per-

formance of parallel compilers and parallel systems. For our study, we used MPI codes

from the NPB 2.3 release. Sequential performance measurements used as a baseline were

performed using the Fortran-based NPB 2.3-serial release.The CAF and UPC benchmarks

were derived from the corresponding NPB-2.3 MPI implementations; they use essentially

the same algorithms as the corresponding MPI versions.

MPI versions of the NAS CG and BT were described in section 3.2.1. We presented the

CAF versions of NAS CG and BT in sections 6.2 and 6.3.
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7.2 Experimental Platforms

Our experiments studied the performance of the NAS CG and BT benchmarks on four

architectures.

The first platform is a cluster of 92 HP zx6000 workstations interconnected with Myrinet

2000. Each workstation node contains two 900MHz Intel Itanium 2 processors with 32KB

of L1 cache, 256KB of L2 cache, and 1.5MB L3 cache, 4-8GB of RAM, and the HP zx1

chipset. Each node is running the Linux operating system (kernel version 2.4.18-e plus

patches). We used the Intel compilers V8.0 as our back-end compiler and the Berkeley

UPC compiler V2.1.0∗ with thegm conduit.

The second platform was the Lemieux Alpha cluster at the Pittsburgh Supercomput-

ing Center. Each node is an SMP with four 1GHz processors and 4GB of memory. The

operating system is OSF1 Tru64 v5.1A. The cluster nodes are connected with a Quadrics

interconnect (Elan3). We used the Compaq Fortran 90 compiler V5.5 and Compaq C/C++

compiler V6.5 as well as the Berkeley UPC compiler V2.0.1† using theelan conduit.

The other two platforms are non-uniform memory access (NUMA) architectures: an

SGI Altix 3000 and an SGI Origin 2000. The Altix 3000 has 128 Itanium2 1.5GHz pro-

cessors with 6MB L3 cache, and 128GB RAM, running the Linux64OS with the 2.4.21

kernel, Intel compilers V8.0, and the Berkeley UPC compilerV2.1.0‡ using theshmem

conduit. The Origin 2000 has 32 MIPS R10000 processors with 4MB L2 cache and 16 GB

RAM, running IRIX64 V6.5, the MIPSpro Compilers V7.4 and theBerkeley UPC compiler

V2.0.1§ using thesmp conduit.

∗back-end compiler options: -overridelimits -O3 -g -tpp2
†back-end compiler options: -fast -O5 -tune host -intrinsics
‡back-end compiler options: -overridelimits -O3 -g -tpp2
§back-end compiler options: -64 -mips4 -DMPI -O3
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7.3 Performance Metric

For each application and platform, we selected the largest problem size for which all the

MPI, CAF, and UPC versions ran and verified within the architecture constraints (mainly

memory).

For each benchmark, we compare the parallel efficiencies of the CAF, UPC and MPI

versions. We compute parallel efficiency as follows. For each parallel versionρ, the ef-

ficiency metric is computed as ts
P×tp(P,ρ)

. In this equation,ts is the execution time of the

original Fortran sequential version implemented by the NASgroup at the NASA Ames

Research Laboratory;P is the number of processors;tp(P, ρ) is the time for the paral-

lel execution onP processors using parallelizationρ. Using this metric, perfect speedup

would yield efficiency 1.0. We use efficiency rather than speedup or execution time as our

comparison metric because it enables us to accurately gaugethe relative performance of

multiple benchmark implementations across theentire range of processor counts. There

are also sequential C implementations of the NAS CG and BT benchmarks that employ the

same algorithms as the original Fortran versions. The performance of the C version of CG

is similar to that of the original Fortran versions. The C version of BT is up to two times

slower than its Fortran variant.

7.4 NAS CG

Figures 7.1 and 7.2 show the parallel efficiency of NAS CG classes A (problem size 14000)

and C (problem size 150000) on an Itanium2+Myrinet 2000 cluster. In the figure, MPI

represents the NPB-2.3 MPI version, CAF represents the fastest CAF version,BUPC rep-

resents a UPC implementation of CG compiled with the Berkeley UPC compiler,CAF-

barrier represents a CAF version using barrier synchronization, and BUPC-reductionrep-

resents an optimized UPC version.

The CAF version of CG was derived from the MPI version by converting two-sided MPI

communication into equivalent calls to notify/wait and vectorized one-sided communica-
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Figure 7.1: Comparison of MPI, CAF and UPC parallel efficiency for NAS CG class A on

an Itanium2+Myrinet architecture.

tion [56]. TheBUPCversion is also based on the MPI version; it uses UPC shared arrays

for communication and split-phase barriers and employs thread-privatization [42] (using

regular pointers to access shared data available locally) for improved scalar performance.

The performance of the MPI and CAF versions is comparable forclass C, consistent

with our previous studies [56, 73]. The performance ofBUPC was up to a factor of 2.5

slower than that of MPI. By using HPCToolkit, we determined that for one CPU, both

the MPI and theBUPCversions spend most of their time in a loop that performs a sparse

vector-matrix product; however, theBUPC version spent over twice as many cycles in

the loop as the Fortran version. The UPC and the Fortran versions of the loop are shown

in Figure 7.5. By inspecting the Intel C and Fortran compilers optimization report, we

determined that the Fortran compiler recognizes that the loop performs a sum reduction and

unrolls it, while the C compiler does not unroll it. We manually modified the UPC version

of the loop to compute the sum using two partial sums, as shownin Figure 7.5(c); we

denote this versionBUPC-reduction. On Itanium processors, this leads to a more efficient
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Figure 7.2: Comparison of MPI, CAF and UPC parallel efficiency for NAS CG class C on

an Itanium2+Myrinet architecture.
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Figure 7.3: Comparison of MPI, CAF and UPC parallel efficiency for NAS CG class B on

an Alpha+Quadrics architecture.
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(a) CG class C on Altix 3000
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(b) CG class B on Origin 2000

Figure 7.4: Comparison of MPI, CAF and UPC parallel efficiency for NAS CG on SGI

Altix 3000 and SGI Origin 2000 shared memory architectures.
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sum = 0.0;

for (k = rowstr[j];

k < rowstr[j+1];

k++) {

sum +=

a[k-1]*p[colidx[k-1]-1];

}

sum = 0.d0

do k=rowstr(j),rowstr(j+1)-1

sum = sum + a(k)*p(colidx(k))

end do

(a) UPC (b) Fortran
t1 = t2 = 0

for (...; k+=2 ) {

t1 += a[k-1] * p[colindex[k-1]-1]

t2 += a[k] * p[colindex[k]-1]

}

// + fixup code if the range of k isn’t even

sum = t1 + t2

(c) UPC with sum reduction

Figure 7.5: UPC and Fortran versions of a sparse matrix-vector product.

instruction schedule.

For one CPU,BUPC-reductionachieved the same performance as MPI. The graph in

Figure 7.2 shows thatBUPC-reductionis up to 2.6 times faster thenBUPC. On up to

32 CPUs,BUPC-reductionis comparable in performance to MPI. On 64 CPUs,BUPC-

reductionis slower by 20% than the MPI version. To explore the remaining differences, we

investigated the impact of synchronization. We implemented a CAF version that uses bar-

riers for synchronization to mimic the synchronization present inBUPC-reduction. As

shown in Figure 7.2, the performance ofCAF-barrier closely matches that ofBUPC-

reductionfor large numbers of CPUs; it also experiences a 38% slowdowncompared to

the CAF version.

Figure 7.3 shows the parallel efficiency of NAS CG class B (problem size 75000) on
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Figure 7.6: Comparison of MPI, CAF and UPC parallel efficiency for NAS BT class A,

on an Itanium2+Myrinet architecture.

an Alpha+Quadrics cluster. This study evaluated the same versions of the MPI, CAF and

BUPCcodes as on the Itanium2+Myrinet 2000 cluster. On this platform, the three versions

of NAS CG achieve comparable performance. The Compaq compiler was able to optimize

the non-unrolled C version of the sparse matrix-vector product loop; for this reasonBUPC

andBUPC-reductionyield similar performance.

Figure 7.4(a) shows the parallel efficiency of NAS CG class C (problem size 150000)

on an SGI Altix 3000. This study evaluates the same versions of NAS CG as those used on

the Itanium2+Myrinet 2000 cluster. The CAF and MPI versionshave similar performance.

BUPC is up to a factor of 3.4 slower than MPI.BUPC-reductionperforms comparably

to MPI on up to 32 CPUs and it is 14% slower on 64 CPUs. TheCAF-barrier version

experiences a slowdown of 19% relative to CAF. Notice also that while the performance

degradation due to the use of barrier-only synchronizationis smaller on the SGI Altix 3000

than on the Itanium2+Myrinet 2000 cluster, it prevents achieving high-performance on

large number of CPUs on both architectures.
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Figure 7.7: Comparison of MPI, CAF and UPC parallel efficiency for NAS BT class C,

on an Itanium2+Myrinet architecture.
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Figure 7.8: Comparison of MPI, CAF and UPC parallel efficiency for NAS BT class B,

on an Alpha+Quadrics architecture.
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Figure 7.9: Comparison of MPI, CAF and UPC parallel efficiency for NAS BT class B on

an SGI Altix 3000 shared memory architecture.
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Figure 7.10: Comparison of MPI, CAF and UPC parallel efficiency for NAS BT class A

on an SGI Origin 2000 shared memory architecture.
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The parallel efficiency of NAS CG class B (problem size 75000)on the SGI Origin

2000 is shown in Figure 7.4(b). We used the same MPI and CAF versions as for the

previous three platforms. We used the Berkeley UPC and the Intrepid UPC compilers to

build the UPC codes; the corresponding versions areBUPCandIUPC. On this platform,

MPI, CAF andBUPC have comparable performance across the range of CPUs. In each

case, the MIPSPro compilers were able to optimize the sparsematrix-vector product loop

automatically and effectively; consequently, using the partial sums version didn’t boost

performance. We also didn’t notice a performance difference between CAF andCAF-

barrier. TheIUPC version is up to 50% slower than the other three versions. Theprincipal

loss of performance stems from ineffective optimization ofthe sparse-matrix vector product

computation.IUPC-reductionrepresents an IUPC-compiled version of UPC CG with the

sparse matrix-vector product loop unrolled; this version is only 12% slower than MPI.

7.5 NAS BT

In Figures 7.6 and 7.7, we present parallel efficiency results of NAS BT classes A (prob-

lem size643) and C (problem size1623) on an Itanium2+Myrinet 2000 cluster. We used the

NPB-2.3 MPI version, MPI, the most efficient CAF version, CAF, a UPC implementation

similar to MPI and compiled with the Berkeley UPC compiler,BUPC, and two optimized

UPC versions,BUPC-restrictandBUPC-packed. Due to memory constraints, we couldn’t

run the sequential Fortran version of BT for class C; to compute parallel efficiency we as-

sume that the efficiency of MPI on four CPUs is one, and computethe rest of the efficiencies

relative to that baseline performance.

The CAF implementation of BT is described in more detail in chapter 6. It uses com-

munication vectorization, a trade-off between communication buffer space and amount of

necessary synchronization, procedure splitting and non-blocking communication. It also

uses the packing of stridedPUTs, due to inefficient multi-platform support of stridedPUTs

by the CAF runtime. The initial UPC version was also derived from the MPI version.

The performance of the CAF version is better than or equal to that of MPI. The per-
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formance of the initial UPC version,BUPC, was up to a factor of five slower than that

of the MPI version. By using HPCToolkit, we determined that several routines that per-

form computation on the local part of shared data, namelymatmul sub, matmul vec,

binvrhs, binvcrhs andcompute rhs, are considerably slower inBUPCcompared

to the MPI version. To reduce overly conservative assumption about aliasing, we added

therestrict keyword to the declarations of all the pointer arguments of the subroutines

matmul sub, matmul vec, binvrhs, andbinvcrhs. The modified UPC version of

NAS BT isBUPC-restrict; it is up to 42% faster thanBUPC.

To investigate the impact of communication performance on parallel efficiency, we in-

strumented all NAS BT versions to record the times spent in communication and synchro-

nization. We found thatBUPC-restrictspent about 50-100 times more in communication

on the Itanium2+Myrinet 2000 cluster because the communication in the sweeps was not

fully vectorized; it transfers a large number of messages of25 double precision numbers.

In chapter 6 we show that, in the absence of efficient runtime support for strided commu-

nication, packing for the CAF version of BT can improve performance by as much as 30%

on cluster platforms.

We transformed theBUPC-restrictversion to perform packing and unpacking and used

the UPCupc memget primitive to communicate the packed data; the resulting version

with packed communication is denotedBUPC-packed. This version is up to 32% faster than

BUPC-restrict. Overall,BUPC-packedyields a factor of 2.44 improvement overBUPC.

In Figure 7.8 we present the results for NAS BT class B¶(problem size1023) on an

Alpha+Quadrics cluster. The MPI version yields the best performance; CAF is up to 26%

slower than MPI, andBUPC is up to two times slower than MPI. On the Alpha+Quadrics

cluster, using therestrict keyword didn’t have an effect; consequently,BUPC and

BUPC-restricthave similar performance. This shows that even though the back-end C

¶We used class B due to limitations encountered for class C forthe CAF andBUPCversions. CAF could

not allocate the large data size required for BT class C on small number of processors, whileBUPCcould not

allocate memory for a number of threads larger than 100.
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compiler can optimize routines such asmatmul sub, matmul vec, binvrhs, and

binvcrhs, which contain at most one loop or just straight-line code, it has difficulties

optimizingcompute rhs. This subroutine contains several complex loop nests and per-

forms references to the local parts of multiple shared arrays using private pointers; this

poses a challenge to the back-end C compiler. In the CAF version, compute rhs per-

forms the same computations on local parts of co-arrays; to convey the lack of aliasing to

the back-end Fortran compiler we use procedure splitting. Packing of communication led

to a performance gain:BUPC-packedis up to 14% faster thanBUPC, although it is still up

to 82% faster than MPI.

In Figure 7.9 we present the results for NAS BT class B (problem size1023) on an

SGI Altix 3000 platform. We studied class B, due to memory andtime constraints on the

machine. The MPI and CAF versions have similar performance,while BUPC is up to

two times slower than MPI.BUPC-restrictis up to 30% faster thanBUPCand up to 43%

slower than MPI.BUPC-packedhas the same performance asBUPC-restrict. Packing

didn’t improve the performance because fine-grain data transfers are efficiently supported

in hardware.

Finally, in Figure 7.10 we present results on the SGI Origin 2000 machine. We studied

class A (problem size643) of NAS BT due to memory and time constraints. The CAF

and MPI versions perform comparably, whileBUPC performs 40% slower than the MPI

version. Similar to our experiences with the other benchmarks, usingrestrict didn’t

improve the performance ofBUPC-restrict, and similar to the SGI Altix 3000, communi-

cation packing didn’t improve the performance ofBUPC-packed.
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Chapter 8

Analyzing the Effectiveness of CAF Optimizations

An application compiled by an optimizing compiler usually undergoes several transforma-

tions and optimizations with the goal of increasing the application’s performance. It is

often desired to quantify how much each optimization contributes to performance; it is also

important to understand how optimizations interact with each other, e.g., one optimization

might be an enabling transformation for another optimization, or might inhibit it. Due to

the complex nature of the transformations, one needs to havea rigorous methodology to

estimate these effects. Such a methodology is the the2kr factorial design [123]. In this

chapter we will use the2kr full factorial design withr replications to assess the impact of

compiler optimizations and their interactions on application performance.

In previous chapters, we identified several important source-to-source code transfor-

mations to increase the performance of parallel CAF codes. Understanding how trans-

formations affect performance helps to prioritize their implementation. For this study, we

selected the LBMHD [157] application, described in Section3.2.2, coded several Co-Array

Fortran versions, and analyzed it using the2kr experimental design methodology. Since

our ultimate goal is to achieve portable and scalable high performance, we also present a

comparison of the best-performing CAF version of LBMHD withits MPI counterpart.

In section 8.1 we present an overview of the2kr experimental design methodology

and we describe a CAF implementation of LBMHD in section 3.2.2. We describe our

experimental approach in section 8.3, and present our results and analysis in section 8.4.

Finally, we discuss our results in section 8.5.
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8.1 2kr Experimental Design Methodology

The 2kr experimental design is used to determine the effect ofk factors, each of which

has two levels, andr replications are used to estimate the experimental error. The de-

sign consists of determining factors and the model, constructing the corresponding sign

table, collecting experimental data, finally, determiningthe model coefficients and their

confidence intervals as well as running visual tests to verify the model assumptions. The

interesting factors and interactions should be statistically significant (the confidence inter-

val does not include zero), and practically significant (thepercentage of variation explained

is larger than 0.05% according to Jain). The details of the2kr experimental design can be

found in Jain’s performance analysis book [123] chapters 17-18.

8.2 Writing LBMHD in CAF

We obtained both MPI and CAF versions of LBMHD from Jonathan Carter from Lawrence

Berkeley National Laboratory. The original CAF version of LBMHD was developed for

the Cray X1 architecture. It uses allocatable co-arrays andpartially vectorized remote

co-array reads (GETs) to communicate data between processors. We converted remote

co-array reads into remote co-array assignments (PUTs) to enable the use of non-blocking

communication hints. For the problem sizes of10242 and20482, which we used in our

experiments, communication is a significant portion of program execution time. Thus, we

tested transformations that optimize communication, in particular, communication vector-

ization, communication packing and aggregation, synchronization strength reduction, and

use of non-blocking communication hints. The LBMHD code does not offer opportunities

to evaluate the procedure splitting optimization because no computation is performed using

local co-array data.
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Symbol Factor Level -1 Level +1

A Comm. vectorization unvectorized comm vectorized comm

B Sync. strength-reduction group sync point-to-point sync

C Comm. packing unpacked comm packed comm

D Non-blocking comm. blocking comm non-blocking comm

E Architecture type cluster smp

F Number of CPUs 4 64

G Problem size 10242 20482

Table 8.1: Factors and levels for the CAF implementations ofLBMHD.

8.3 Experimental Design

Before using the2kr experimental design methodology, we had to carefully choose the

relevant factors. We looked at a total of seven factors,A − G, out of which four repre-

sent the presence or absence of optimizations, while the remaining three include problem

size, number of CPUs and architecture type; the meaning attached to each factor levels is

described in Table 8.1.

We analyzed our data with both additive and multiplicative models. For the additive

model, the model equations for a24r experiment (for a particular choice of platform, num-

ber of CPUs and problem size) is

y = q0 + qAxA + qBxB + qCxC + qDxD + qABxAB + qACxAC + qADxAD +

qBCxBC + qBDxBD + qCDxCD + qABCxABC + qABDxABD + qACDxACD
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For the multiplicative model, the model equation is

y = 10q
010qAxA10qBxB10qCxC10qDxD10qABxAB10qACxAC10qADxAD

10qBCxBC10qBDxBD10qCDxCD10qABCxABC10qABDxABD

10qACDxACD10qBCDxBCD10qABCDxABCD

For the24k experiment with the factorsA, B, C, andD, we hand-coded 16 versions of

the LBMHD benchmark. The versions were termedmhd-caf-xyzw, wherex, y, z, and

w have the following meaning:

x =







0 xA = −1

1 xA = +1
y =







0 xB = −1

1 xB = +1

z =







0 xC = −1

1 xC = +1
w =







0 xD = −1

1 xD = +1

When implementing a version with synchronization strengthreduction,mhd-x1zw,

the communication is essentially the same as in the versionmhd-x0zw, but the synchro-

nization primitives are interspersed with the communication code; async notify to an

imageP is issued as soon as the communication events toP have been issued.

When implementing a version that employs communication packing,mhd-xy1w, com-

munication to a imageP is issued as soon as packing for that image is ready; taking this

one step further, we have reordered the packing and the communication steps such that a

image packs and communicates all necessary data for one neighbor at a time. Correspond-

ingly, on the destination side, a image waits for a notification, then unpacks the data, for one

source at a time. When using the non-blocking communication, this provides more oppor-

tunities to overlap communication with packing and unpacking. It is important to mention

that communication packing superseeds communication vectorization; for this reason, a

versionmhd-caf-1y1w is identical to the versionmhd-caf-0y1w.

To perform experiments considering any of the remaining factors, E, F , or G, one

simply changes the submission parameters such as problem size of number or CPUs, or the

target machine.

We performed two sets of experiments:24r and25r, measuring the running time as the



101

Factor Effect % of Variation Confidence Interval Stat. Imp.

I -1.0167 0.0000 ( -1.0428 , -0.99 ) x

A 0.0029 0.0061 ( -0.0233 , 0.03 )

B -0.0255 0.4840 ( -0.0516 , 0 )

C -0.3324 82.3032 ( -0.3585 , -0.31 ) x

D -0.0185 0.2556 ( -0.0446 , 0.01 )

AB -0.0109 0.0885 ( -0.0370 , 0.02 )

AC -0.0029 0.0061 ( -0.0290 , 0.02 )

AD 0.0024 0.0042 ( -0.0237 , 0.03 )

BC -0.0429 1.3688 ( -0.0690 , -0.02 ) x

BD 0.0078 0.0450 ( -0.0183 , 0.03 )

CD -0.0186 0.2590 ( -0.0448 , 0.01 )

ABC 0.0109 0.0885 ( -0.0152 , 0.04 )

ABD -0.0043 0.0138 ( -0.0304 , 0.02 )

ACD -0.0024 0.0042 ( -0.0285 , 0.02 )

BCD 0.0225 0.3778 ( -0.0036 , 0.05 )

ABCD 0.0043 0.0138 ( -0.0218 , 0.03 )

Table 8.2: Effects and variation explained for LBMHD, for problem size10242 and 64

CPUs, on the SGI Altix 3000 platform.

response variable. The first set analyzes four factors (A-D)under either a multiplicative or

an additive model. The second set is an attempt to add a fifth factor – the architecture type.

The fifth factor compares a cluster-based architecture (Itanium2+Quadrics) and a hard-

ware shared-memory architecture (Altix 3000). Because theruntime difference between

equivalent runs on different architectures is significantly large than runtime variation due

to optimizations on either of the platforms, we normalize the time of each run by dividing it

by the average time among all runs on the corresponding architecture. While this might in-
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Factor Effect % of Variation Confidence Interval Stat. Imp.

I 3.5580 0.0000 ( 3.5572 , 3.5587 ) x

A -0.0069 0.4200 ( -0.0076 , -0.0061 ) x

B -0.0213 4.0500 ( -0.0221 , -0.0206 ) x

C -0.1030 94.7400 ( -0.1038 , -0.1023 ) x

D 0.0015 0.0200 ( 0.0008 , 0.0023 ) x

AB 0.0025 0.0600 ( 0.0018 , 0.0033 ) x

AC 0.0069 0.4200 ( 0.0061 , 0.0076 ) x

AD 0.0010 0.0100 ( 0.0003 , 0.0018 ) x

BC 0.0018 0.0300 ( 0.0011 , 0.0026 ) x

BD 0.0017 0.0300 ( 0.0010 , 0.0025 ) x

CD -0.0017 0.0300 ( -0.0024 , -0.0009 ) x

ABC -0.0025 0.0600 ( -0.0033 , -0.0018 ) x

ABD 0.0007 0.0000 ( -0.0001 , 0.0014 )

ACD -0.0010 0.0100 ( -0.0018 , -0.0003 ) x

BCD -0.0010 0.0100 ( -0.0018 , -0.0003 ) x

ABCD -0.0007 0.0000 ( -0.0014 , 0.0001 )

Table 8.3: Effects and variation explained for LBMHD, for problem size20482 and 64

CPUs, on the SGI Altix 3000 platform.

troduce some inaccuracy into the analysis, without it, the architecture type factor dominates

the analysis making other factor and interaction contributions essentially irrelevant.

We have also tried to have the problem size as a factor. However, the problem size

dominates all other factors and interactions, making the analysis not interesting. Similarly,

if we use the number of CPUs as a factor (e.g., 4 and 64), it dominates the analysis. It

might be possible to successfully use this factor for weak scaling experiments, in which

one expects the running time not to depend so much on the number of CPUs as it does for
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Figure 8.1: Visual tests for problem sizes10242 and20482 , 64 CPUs, on the SGI Altix

3000.

strong scaling experiments.

Our final goal is to achieve high parallel performance. Sincethe gold standard of paral-

lel programming is still MPI, it is usual for the performanceparallel languages benchmarks

to be compared against that of their MPI counterparts. We compare the best-performing
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CAF version of LBMHD with the equivalent MPI version over a large span of CPU num-

bers.

8.4 Experimental Results

We evaluated the impact and interactions of CAF optimizations on three platforms.

The first platform used was a cluster of 2000 HP Long’s Peak dual-CPU workstations at

the Pacific Northwest National Laboratory. The nodes are connected with Quadrics QSNet

II (Elan 4). Each node contains two 1.5GHz Itanium2 processors with 32KB/256KB/6MB

L1/L2/L3 cache and 4GB of RAM. The operating system is Red HatLinux (kernel version

2.4.20). The back-end compiler is the Intel Fortran compiler version 8.0.

The second platform is an SGI Altix 3000, with 128 Itanium2 1.5GHz processors with

6MB L3 cache, and 128 GB RAM, running the Linux64 OS with the 2.4.21 kernel and the

Intel Fortran compiler version 8.0.

The third platform we used for experiments was a cluster of 92HP zx6000 workstations

interconnected with Myrinet 2000. Each workstation node contains two 900MHz Intel

Itanium 2 processors with 32KB/256KB/1.5MB of L1/L2/L3 cache, 4-8GB of RAM, and

the HP zx1 chipset. Each node is running the Linux operating system (kernel version

2.4.18-e plus patches). We used the Intel Fortran compiler version 8.0 for Itanium as our

Fortran 90 back-end compiler.

On the SGI Altix 3000 system, we performed24r full-factorial experiments for sizes

10242 and20482, on 4, 16, and 64 CPUs. We performed experiments for both the additive

and the multiplicative model; the percentage of variation explained by the major factors are

similar, and the visual tests are similar for both models. Wewill present the results for the

multiplicative model for the problem sizes10242 and20482, on 64 CPUs.

In Tables 8.2 and 8.3 we present the coefficient for the multiplicative model, the per-

centage of variation explained by each factor and the confidence intervals for each factor

for problem sizes of10242 and20482. For a problem size of10242, the factors that explain

the largest percentage of variation and are statistically significant at the 90% confidence
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level areC, the communication packing optimization, which explains 82% of variation,

followed byBC, the interaction between synchronization strength-reduction and commu-

nication packing. Statistically insignificant factors areA, B, D, AB, AC, AD, BD, CD,

ABC, ABD, ACD, BCD andABCD. The results are surprising, showing that only one

factor and one interaction are simultaneously practicallysignificant and statistically signif-

icant. Overall, the chosen factors and their interactions explain 85% of total variation. For

the problem size of20482, the major factors and interactions areC, communication pack-

ing,B, synchronization strength-reduction,A, communication vectorization,AC, AB, and

ABC. The factorsD, AD, BC, CD, ACD, andBCD are practically insignificant (their

percentage of variation explained is less than 0.05). The only statistically insignificant

interactions areABD andABCD.

In Figure 8.1 we present the visual tests recommended by Jain. The visual tests don’t

show any trend of residuals vs the predicted value or the experiment number; the quantile-

quantile plots of the residuals are reasonably linear.

The factors that explain the largest percentage of variation and are statistically signifi-

cant at the 90% confidence level areC, the communication packing optimization, which ex-

plains 82% of variation, followed byBC, the interaction between synchronization strength-

reduction and communication packing. Statistically insignificant factors areA, B, D, AB,

AC, AD, BD, CD, ABC, ABD, ACD, BCD andABCD. The results are surprising,

showing that only one factor and one interaction are simultaneously practically significant

and statistically significant. Overall, the chosen factorsand their interactions explain 85%

of total variation.

In Table 8.4 we present the percentage of variation explained by the practically and

statistically significant factors for LBMHD, for problem sizes10242 and20482 on 4, 16

and 64 CPUs. The dominant factor is communication packing, explaining 82-99% of vari-

ation. Synchronization strength-reduction explains 4% ofvariation for problem size20482

on 64 CPUs, but is statistically insignificant for problem size 10242, contrary to our ex-

pectations; we explain this by the fact that the10242 and20482 problem size experiments
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10242 20482

Factor
4 16 64 4 16 64

I 0 0 0 0 0 0

A 1.482 0.898 0.334 0.329 1.581 0.832

B 0.303 0.059 0.050 0.497 1.109 0.270

C 95.701 97.316 98.488 92.349 93.368 91.969

D 0.091 0.231

AC 1.482 0.898 0.334 0.329 1.581 0.832

AD 0.510

BC 0.240 0.108 0.127

BD 0.113 0.118 0.528 0.883

CD 0.181 0.147 3.114 0.667 0.975

ACD 0.510

BCD 0.063 0.868 0.194

Table 8.4: Practically significant factors at 90% confidencefor LBMHD, for problem sizes

10242 and20482 and for 4, 16, and 64 CPUs, on the Itanium2+Quadrics platform.

were performed on different CPU sets and under different system loads. Communication

vectorization,A, and the interactionAC explain up to 2.27% for four CPUs, and less for

a larger number of CPUs; this shows that as we increase the number of CPUs, packing

is more important for achieving high-performance. Finally, non-blocking communication

has a insignificant impact on performance; this is expected since the SGI Altix 3000 system

doesn’t provide hardware support for non-blocking communication.

Similarly to the SGI Altix platform, tables 8.5 and 8.6 present factor and interaction

coefficients, percentage of variation explained by them andtheir confidence intervals at the

90% significance level under a multiplicative model for10242 and20482 problem sizes

on an Itanium2 cluster with a Quadrics interconnect (mpp2 PNNL cluster). For the10242
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Figure 8.2: Visual tests for problem sizes10242 and 20482, 64 CPUs, on the Ita-

nium2+Quadrics architecture.

problem size, the most significant factor isC, communication packing and aggregation,

explains 98.5% of variation. Other significant factors are A, B, D, AC, and CD. For20482

problem size, again communication packing is the most significant factor explaining 92%

of variation; other significant factors are A, AC, and CD.
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Figure 8.2 present Jain-recommended visual tests to verifythe model. The residu-

als seem not to depend on the predicted response and experiment number. The quantile-

quantile plots are reasonable close to linear indicating distributions of residuals close to the

normal distribution.

Table 8.7 presents statistically and practically significant factors and interactions for

10242 and20482 problem sizes on 4, 16 and 64 CPUs. The major factor is communica-

tion packing and aggregation (C) for all experiment configurations. To our surprise, the

contribution of the communication vectorization factor was barely noticeable (0.3-1.5%)

indicating that there exists an inefficiency in the ARMCI forstrided transfers.

We performed25r experiments on all three platforms, choosing the factors A,B, C,

D, and adding F, the number of CPUs; the response was the totalexecution time. The

percentage of variation explained by the number of CPUs is very high: 96-99% on the

Itanium2+Quadrics cluster, 96-99% on the SGI Altix 3000 system, and 99.6% on the Ita-

nium2+Myrinet 2000 cluster. We noticed similar results when using the parallel efficiency

as response variable. This results are due to the fact that LBMHD exhibits strong scaling

(i.e. the problem size is the same for an increasing number ofCPUs). The conclusion is

that we cannot use the number of CPUs as a factor, because it would completely dominate

the remaining factors.

Figures 8.3, 8.4, and 8.5 present the parallel efficiency forMPI and fastest CAF ver-

sions over a large range of CPUs. The plots show that on the SGIAltix 3000 and Ita-

nium2+Quadrics platforms the CAF version significantly outperforms the MPI version.

MPI outperforms CAF for the20482 size on the Itanium2+Myrinet cluster, while for the

10242 the MPI and the CAF version achieve comparable performance.

Table 8.8 presents statistically and practically significant factors and interactions in a

25r cross-platform experimental design. The fifth factor, E, stands for the architecture type:

cluster (mpp2) or hardware shared memory (Altix). The running times were normalized

as explained in 8.3 to accomodate for differences in serial performance due to different

host CPUs and memory controllers. While the normalization might introduce errors into
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Factor Effect % of Var. Confidence Interval Stat. Imp.

I -1.223 0.000 ( -1.23 , -1.22 ) x

A -0.019 0.334 ( -0.03 , -0.01 ) x

B -0.008 0.050 ( -0.01 , 0.00 ) x

C -0.333 98.488 ( -0.34 , -0.33 ) x

D -0.002 0.003 ( -0.01 , 0.00 )

AB -0.002 0.003 ( -0.01 , 0.00 )

AC 0.019 0.334 ( 0.01 , 0.03 ) x

AD 0.002 0.002 ( 0.00 , 0.01 )

BC -0.005 0.020 ( -0.01 , 0.00 )

BD 0.001 0.000 ( -0.01 , 0.01 )

CD -0.007 0.045 ( -0.01 , 0.00 ) x

ABC 0.002 0.003 ( 0.00 , 0.01 )

ABD -0.002 0.004 ( -0.01 , 0.00 )

ACD -0.002 0.002 ( -0.01 , 0.00 )

BCD -0.002 0.002 ( -0.01 , 0.00 )

ABCD 0.002 0.004 ( 0.00 , 0.01 )

Table 8.5: Effects and variation explained for LBMHD (size10242, 64 CPUs) on the

Itanium2+Quadrics platform.

the model, for10242 problem size the total percentage of explained variation is99.6%;

however, it is only 59.12% for20482 problem size. The most dominant factor is again

communication packing and aggregation. The architecture type factor is also significant:

8.3% for10242 problem size and 5.1% for20482 problem size.
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Factor Effect % of Var. Confidence Interval Stat. Imp.

I 3.212 0.000 ( 3.21 , 3.22 ) x

A -0.012 0.832 ( -0.02 , -0.01 ) x

B -0.007 0.270 ( -0.01 , 0.00 )

C -0.122 91.969 ( -0.13 , -0.12 ) x

D -0.005 0.157 ( -0.01 , 0.00 )

AB 0.000 0.001 ( -0.01 , 0.01 )

AC 0.012 0.832 ( 0.01 , 0.02 ) x

AD 0.003 0.047 ( 0.00 , 0.01 )

BC -0.004 0.108 ( -0.01 , 0.00 )

BD -0.001 0.012 ( -0.01 , 0.01 )

CD -0.013 0.975 ( -0.02 , -0.01 ) x

ABC 0.000 0.001 ( -0.01 , 0.01 )

ABD 0.002 0.020 ( 0.00 , 0.01 )

ACD -0.003 0.047 ( -0.01 , 0.00 )

BCD -0.005 0.144 ( -0.01 , 0.00 )

ABCD -0.002 0.020 ( -0.01 , 0.00 )

Table 8.6: Effects and variation explained for LBMHD (size20482, 64 CPUs) on the

Itanium2+Quadrics platform.

8.5 Discussion

Our 25r experiments showed that communication packing and aggregation is a crucial

transformation for achieving high performance over multiple architecture types. After us-

ing the2kr experimental design methodology to analyze the impact and interactins of CAF

versions of LBMHD, we think that this methodology has only a limited applicability. It is

of most use when prioritizing the implementation of such optimizations in a compiler; one

can implement first the most important optimizations, followed by optimizations which
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% of Variation for10242 % of Variation for20482

Factor
4 16 64 4 16 64

A 2.271 0.092 1.174 0.640 0.420

B 0.820 0.056 0.234 4.050

C 93.021 99.363 82.303 83.588 98.032 94.740

AB 0.060

AC 2.271 0.092 1.174 0.640 0.420

BC 1.369

BD 0.187

ABC 0.060

Table 8.7: Practically and statistically significant factors for LBMHD, for problem sizes

10242 and20482 and for 4, 16, and 64 CPUs, on an SGI Altix 3000.
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Figure 8.3: Parallel efficiency of LBMHD for problem sizes10242 and20482, on an SGI

Altix 3000 system.

are part of important interactions. However, the methodology might be too coarse, con-

sidering that a certain optimization might be implemented in multiple ways; for example,

communication packing also required a careful reordering of packing, communication and

synchronization events.
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Factor % of Var. (10242) % of Var. (20482)

I 0.0000 0.0000

A 0.1698

B 0.3395

C 90.0816 51.3322

D 0.0137

E 8.3072 5.1890

AC 0.1698

AE 0.0130

BC 0.0445

BE 0.1436

CD 0.0154

CE 0.2114

ACE 0.0130

BCDE 0.0162

Total 99.5809 59.1244

Table 8.8: Statistically significant effects and variationexplained for LBMHD (64 CPUs)

on the Itanium2+Quadrics and SGI Altix 3000 platforms for10242 and 20482 problem

sizes.
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Figure 8.4: Parallel efficiency of LBMHD for problem sizes10242 and 20482, on an

Itanium2+Quadrics system.
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Figure 8.5: Parallel efficiency of LBMHD for problem sizes10242 and 20482, on an

Itanium2+Myrinet system.
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Chapter 9

Space-efficient Synchronization Extensions to CAF

When crafting new language features, the performance-minded designer should consider

whether the new features lead themselves to efficient implementations on multiple plat-

forms. On the emerging petascale systems, both space and time must be considered as

measures of efficiency. In Section 3.1 we presented thesync notify/sync wait syn-

chronization extensions, that enabled us to move away from using costly barrier synchro-

nization where lightweight point-to-point synchronization suffices. However, these primi-

tives requireO(P 2) space for aP -processor parallel execution. In this chapter we propose

eventcountsas an alternative, space-efficient synchronization mechanism, sketch an imple-

mentation using an Active Messages underlying layer, and explore how several classes of

application would be written using this primitive.

9.1 Implementation ofsync notify and sync wait

There are multiple possible implementations forsync notify/sync wait primitives;

we will discuss several of them and point their shortcomings.

One implementation would be to queue up notifies on the remoteprocessors, and to

have each remote process image dequeue its notifies as it performssync waits. The

space requirement would be bounded by the total number of outstanding notifies. For well-

written programs, we would expect the number of outstandingnotifies to be reasonably

small. However, misbehaving or incorrect programs might just issue notifies continuously

and not consume them, depleting the memory resources. It would be desirable to have

an implementation for which the space requirement would be bounded independent of the

program behavior.
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long sent[P];
long received[P];
long waited[P];

Figure 9.1: Currentcafc data structure used for the implementation of the

sync notify/sync wait primitives.

An alternative implementation would be to use a hash table ofnotify counters per pro-

cess. The key in the hash table would be the image number of thesender, and the values

cached would correspond to notify counts. This approach would leave to a space require-

ment proportional to the number of neighbors that an image communicates with over the

program execution. A scenario for which this approach wouldbe suboptimal is when an

image communicates with a small group during some program phase, then with some other

group in a different phase; the hash table size would keep increasing, even the space re-

quirements for synchronization would not.

The current implementation of thesync notify andsync wait primitives in the

cafc runtime uses an amount of space bounded at program launch. Three arrays are used,

as shown in Figure 9.1

The locationsent[p] stores the number of notifiessentto processorp; received[p]

stores the number of notifiesreceivedby the current process image fromp, whilewaited[p]

stores the number of notifiesexpectedby the current processor from imagep. Upon the exe-

cution of async notify(p) by processorq, thecafc runtime enforces the completion

of all outstanding requests to processorp, after which it incrementssent[p] on q and

then copies its contents intoreceived[q] on processorp. Upon the execution of a

sync wait(q) by processorp, the executing process image incrementswaited[q],

then spin waits untilreceived[q] exceedswaited[q].

While this implementation ofsync notify andsync wait enables us to over-

come the performance limitations of barrier-only synchronization, it has two significant

drawbacks.
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1. thespace coston P process images isO(P 2); when using systems such as Blue

Gene/L, with as much as 131072 processors, the quadratic space cost might become

problematic.

2. composability: a programmer attempting to overlap synchronization with local com-

putation might issue async notify in one routine and issue async wait in

a different routine, and would have to track the choreography of synchronization

events interprocedurally. However, modern codes are highly modular, and compos-

ing various routines, each of which would do its own synchronization, might result

in incorrect behavior of the program.

9.2 Eventcounts

To scale to petascale systems, it would be desirable to havespace-efficient, composable

synchronization primitives. A mechanism that caught our attention was that ofeventcounts

and sequencers, proposed by Reed and Kanodia in [167]. We proposes an adaptation of

that mechanism for CAF, by providing the following eventcount interface:

• integer function allocate_eventcount(size)
integer size

This function is collective and has the effect of allocatinga distributed eventcount;

on a particular image the eventcount hassize entries. The eventcount allocation

routine returns a eventcount identifier, which can be further used to operate on the

allocated eventcount. Our interface proposes eventcountsthat are global objects,

working on the group of all the images of a running CAF program. In [72], Dotsenko

proposed an extension of CAF with co-spaces, which are groups with well-defined

topologies and created with a hierarchical structure. Eventcounts can be extended

from global objects to object to objects associated with co-spaces; an eventcount

identifier will then be unique within its associated co-space. A graphical representa-

tion of an eventcount is given in Figure 9.2; we emphasize that the eventcounts don’t

need to have the same number of entries on each image.
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• subroutine reset_eventcount(evid)
integer evid

This function is collective and resets the eventcount to 0 onall images and for all

entries on each image. The initial allocation of eventcounts performs an implicit

reset.

• subroutine advance_eventcount(evid, proc, index, count)
integer evid, proc, index, count

This primitive has the effect of advancing the eventcountevid on process image

proc, entryindex by count. Similar to async notify, it also means that all

communication events between the current process and processorp have completed

upon completion of the advance primitive onp.

• subroutine wait_eventcount(evid, index, count)
integer evid, index, count

This primitive checks if the local entryindex on the eventcountevid on the current

process image has advanced bycount from the last wait primitive; if the condition

is not met, the current processor’s execution is suspended until the eventcount has

advanced the required number of units.

• logical function test_eventcount(evid, index, count)
integer evid, index, count

This primitive checks if the local entryindex on the eventcountevid on the current

process image has advanced bycount from the last wait primitive; if the condition

is met, the primitive returnstrue, otherwise it returnsfalse.

• subroutine release_eventcount(evid)
integer evid

This primitive frees the resources used by the eventcountevid.

Operations specified using an invalidevid are incorrect and might trigger exceptions.

Eventcounts identifier can be passed as procedure arguments, enabling overlap of synchro-

nization with computation. Since eventcount are allocatedon demand, different solvers
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Process 1 Process 2 Process n

Eventcount evid

Figure 9.2: Graphical representation of an eventcount. Different process images can have

different number of eventcount entries.

can get different eventcounts and operate independently onthem; this in effect ensures

composability with respect to synchronization of CAF routines using eventcounts as their

synchronization mechanism.

9.3 Eventcounts Implementation Strategy

By providing access to eventcounts by means of an API, we can support them in the CAF

runtime in a portable fashion as a CAF extension, without modifying thecafc front-end.

A practical solution for eventcounts representation on each image is a hash tables of arrays.

For each eventcount, we need to two arrays: one corresponding to the current values of the

eventcounts, and one corresponding to the last value checked by a wait operation.

struct EventCount {
integer eventCountId;
long* received;
long* waited;

}

On allocation, we could use a global eventcount counter which contains the next un-

used eventcount id value; a CAF runtime would increment it then use its value as the next
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Process Q Process PAtomically increment

entry eidx of evcount evid

by adv_count 

Send AM request to P 

AM(advance,evid,eidx,adv_count)

Ensure completion

of communication with P

1

2

3

eidx

Eventcount

 evid
Eventcount

 evid

Figure 9.3: Steps taken in the execution ofadvance eventcount(evid, P,

eidx, count).

eventcount id. Next, each image would allocate a EventCountstructure with the required

number of entries — the argumentsize given toallocate eventcount, and would

initialize the received and waited values to0. A pointer to the structure would then be

inserted into the hash table, using the eventcount id moduloa maximum hash table size

as key. TheeventCountId field should be added to the eventcount representation to

resolve conflicts in the hash table.

In Figure 9.3 we present a strategy of implementingadvance eventcount using

Active Messages (AM). GASNet provides a robust and portablesupport for active mes-

sages, while ARMCI has only fledgling support. The first step is to ensure that the com-

munication events between the current processorq andp have completed. A simple, but

inefficient way of achieving this is to force completion of outstandingPUT requests from

q to p. The next step is to send an active message request for the AM handleradvance,

with the argumentsevid – the eventcount id,eidx— the eventcount entry index,count

— the amount by which the eventcount entry will be incremented. Once the AM handler

gets scheduled for execution onp, it looks up in the hash table the entry corresponding to
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the eventcountevid, and then atomically updates the entryeidx, using primitives such

as fetch-and-add or load-link/store-conditional. For AM libraries which ensure atomicity

at handle level by executing the AM handles until completionwithin the same tread, it is

not required to use the atomic update primitives, and simpleread/writes to the eventcount

memory location suffice; GASNet is such an AM library.

On the execution of await eventcount, the processp first updates the value for

thewaited array by adding the increment it is waiting for, then spinwaits as long as the

received value for the entry of interest is strictly smaller than the waited value.

To execute thereset eventcount primitive, each image looks up the eventcount

entry in the event count hash table, after which it zeroes thereceived and thewaited

arrays. To deallocate an eventcount, each image looks up theeventcount entry in the event

count hash table, after which it deallocates thereceived andwaited arrays, followed

by deallocating the eventcount entry.

9.4 Eventcounts in Action

In this section we will present examples of eventcount usagefor synchronization in several

common data exchange patterns.

9.4.1 Jacobi Solver

In Figure 9.4 we present the main loop of a Jacobi four point stencil solver, and in Figure 9.5

we present the same loop, written using eventcounts for synchronization. We need to signal

the following facts: the remote overlap regions are available to be written, and the buffer

writing from all four neighbors completed. We need to use an eventcount with five entries

per image, one entry per neighbor to allow remote writing to the neighbor, and one entry to

signal write completion from all four neighbors. Overall, the space requirement isO(5P ),

compared toO(P 2) for thesync notify andsync wait primitives.
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do step = 1, nsteps
.... fill in remote overlap region for north neighbor ...
.... fill in remote overlap region for south neighbor ...
.... fill in remote overlap region for east neighbor ...
.... fill in remote overlap region for west neighbor ...
.... perform stencil computation ....
enddo

Figure 9.4: Four-point stencil Jacobi solver pseudocode.

evid = allocate_eventcount(5)
north_index = 1
south_index = 2
east_index = 3
west_index = 4

do step = 1,nstep
advance_eventcount(evid, north_processor, south_index, 1)
advance_eventcount(evid, south_processor, north_index, 1)
advance_eventcount(evid, west_processor, east_index, 1)
advance_eventcount(evid, east_processor, west_index, 1)

wait_eventcount(evid, north_index, 1)
.... fill in remote overlap region for north neighbor ...
advance_eventcount(evid, north_processor, 5, 1)

wait_eventcount(evid, south_index, 1)
.... fill in remote overlap region for south neighbor ...
advance_eventcount(evid, south_processor, 5, 1)

wait_eventcount(evid, east_index, 1)
.... fill in remote overlap region for east neighbor ...
advance_eventcount(evid, east_processor, 5, 1)

wait_eventcount(evid, west_index, 1)
.... fill in remote overlap region for west neighbor ...
advance_eventcount(evid, west_processor, 5, 1)

wait_eventcount(evid, 5, 4)
.... perform stencil computation ....
enddo

Figure 9.5: Four-point stencil Jacobi solver written usingeventcounts.

9.4.2 Conjugate Gradient

In Section 6.2, we presented a CAF implementation of the NAS CG benchmark; we present

a fragment of CG in Figure 9.6(a). Each processor needs to synchronize with⌈log(P )⌉

processors; this shows that we can implement the same synchronization using eventcounts,

each process having⌈log(P )⌉ eventcount entries, which makes the overall space require-

mentO(P log(P )) vsO(P 2). In Figure 9.6(b) we present the same CAF NAS CG fragment
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! notify our partner that we are here and wait for
! him to notify us that the data we need is ready
call sync_notify(reduce_exch_proc(i)+1)
call sync_wait(reduce_exch_proc(i)+1)

! get data from our partner
q(n1:n2) = w(m1:m1+n2-n1)[reduce_exch_proc(i)]

! synchronize again with our partner to
! indicate that we have completed our exchange
! so that we can safely modify our part of w
call sync_notify(reduce_exch_proc(i)+1)
call sync_wait(reduce_exch_proc(i)+1)

! local computation
... use q, modify w ...

(a)sync notify/sync wait implementation

evid = allocate_eventcount(ceil(log(num_images()))
! notify our partner that we are here and wait for
! him to notify us that the data we need is ready
call advance_eventcount(evid, reduce_exch_proc(i)+1, i, 1)
call wait_eventcount(evid,i,1)

! get data from our partner
q(n1:n2) = w(m1:m1+n2-n1)[reduce_exch_proc(i)]

! synchronize again with our partner to
! indicate that we have completed our exchange
! so that we can safely modify our part of w
call advance_eventcount(evid, reduce_exch_proc(i)+1, i, 1)
call wait_eventcount(evid,i,1)

! local computation
... use q, modify w ...

(b) Eventcount-based implementation

Figure 9.6: A typical fragment of optimized CAF for NAS CG.

as in Figure 9.6(a) implemented using eventcounts:

9.4.3 An ADI Solver

In Section 6.3, we presented an optimized CAF implementation of NAS SP; in Figure 9.7

we show the communication, synchronization and computation structure for thex solve

routine, usingsync notify/sync wait primitives. Since each process image synchro-

nizes with only two neighbors in both the forward and the backward sweep phase, we can

use an eventcount with two entries for each of thex solve, y solve andz solve rou-

tines; the first eventcount entry will be used to signal that the remote buffer is available to

be written, and the second eventcount entry will be advancedto indicate the completion of
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! forward substitution
do stage = 1, ncells

if ( stage .ne. 1) then
call sync_wait(predecessor(1)+1)
... unpack buffer ...
if (stage .ne. ncells) then

call sync_notify(predecessor(1)+1)
endif

endif
... perform forward sweep computation ..
if (stage .ne. ncells) then
... pack data for successor ...
if (stage .ne. 1) then

call sync_wait(successor(1)+1)
endif
... perform PUT ..
call sync_notify(successor(1)+1)

endif
enddo

! backsubstitution
call sync_notify(successor(1)+1)
call sync_wait(predecessor(1)+1)
do stage = ncells, 1, -1

if (stage .ne. ncells) then
call sync_wait(successor(1)+1)
... unpack buffer ..
if (stage .ne. 1) then

call sync_notify(successor(1)+1)
endif

else
... computation ...

endif
... perform backsubstitution ...
if (stage .ne. 1) then
... pack buffer ...
if (stage .ne. ncells) then

call sync_wait(predecessor(1)+1)
endif
... perform PUT to predecessor ...
call sync_notify(predecessor(1)+1)

endif
enddo

Figure 9.7: Fragment from the CAF SPx solve routine, using

sync notify/sync wait.

communication. The overall space cost for the sweeps along x, y, and z-directions will then

beO(6P ). The version ofx solve that uses eventcounts is displayed in Figure 9.8.
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evidx = allocate_eventcount(2)
! forward substitution
do stage = 1, ncells
if ( stage .ne. 1) then

.. perform local computation w/o remote data ...
call wait_eventcount(evidx,2,1)
... unpack buffer ...
if (stage .ne. ncells) then
call advance_eventcount(evidx, predecessor(1)+1, 1, 1)

endif
else

.. perform local computation w/o remote data ...
endif
... perform local computation ...
if (stage .ne. ncells) then

... pack data for successor ...
if (stage .ne. 1) then

call wait_eventcount(evidx, 1, 1)
endif
... perform PUT ..
call advance_eventcount(evidx, successor(1)+1, 2, 1)

endif
enddo

! backsubstitution
call advance_eventcount(evidx, successor(1)+1, 1, 1)
call wait_eventcount(evidx, 1, 1)
do stage = ncells, 1, -1
if (stage .ne. ncells) then

call wait_eventcount(evidx, 2, 1)
... unpack buffer ..
if (stage .ne. 1) then

call advance_eventcount(evidx,successor(1)+1,1,1)
endif

else
... computation ...

endif
... perform backsubstitution ...
if (stage .ne. 1) then

... pack buffer ...
if (stage .ne. ncells) then

call wait_eventcount(evidx,1,1)
endif
... perform PUT to predecessor ...
call advance_eventcount(evidx,predecessor(1)+1,2,1)

endif
enddo

Figure 9.8: Fragment from the CAF SPx solve routine, using eventcounts.

9.4.4 Generalized Wavefront Applications

Let’s consider a generalized multiphase wavefront application, in which the dependency

structure is given by a directed acyclic graphGφ for every phaseφ in the set of phasesΦ.

Each node executes the processing described in
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(i)

(ii)

(iii)

(iv)

(v)

Figure 9.9: Graphical representation of progress in a generalized wavefront application.
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p = this image()
foreachphaseφ ∈ Φ

wait for data from all nodes in predecessors(p,φ)
... perform local computation ....
send data to all nodes in successors(p,φ)

end

(a) Pseudocode for a generalized sweep application

p = this image()
foreachphaseφ ∈ Φ

... fill index(p, q,φ), position of p
among successors of q ...

evidφ = allocateeventcount(—successors(p,φ)—)
foreach q in predecessors(p,φ)

advanceeventcount(evidφ,q,1+index(p,q,φ),1)
end
wait eventcount (evidφ,1,—predecessors(p,φ)—)
foreach r in successors(p,φ)

wait eventcount(evidφ,1+index(r,p,φ),1)
... send data to r ...
advanceeventcount(evidφ,r,1,1)

end
end

(b) Pseudocode for a generalized sweep application using eventcounts

Figure 9.10: Pseudocode variants for a generalized sweep application.

A graphical representation of the application progress is given in Figure 9.9. To im-

plement the synchronization, we need to use|Φ| eventcounts. The size of eventcountφ on

nodep is 1+ |successors(p, φ)|, for a total space cost ofΣφ∈ΦΣP
p=1(1+ |successors(p, φ)|.

Notice that we could reuse some of the individual phase eventcounts (for example using

only two) if we could prove that by the time we want to reuse an eventcountφ all the syn-

chronization performed withφ in a prior phase completed on all images. Each nodep will

then execute the pseudocode presented in Figure 9.10(b).
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9.5 Summary

In this chapter, we presented an extension to the CAF synchronization model, eventcounts,

aimed at addressing space efficiency on petascale machines and synchronization compos-

ability for modular software. We described the API for eventcounts, an implementation

strategy using active messages, and showed how they can be used to support data move-

ment patterns common in scientific applications. Generally, PUT-based synchronization

requires two phases: obtaining permission to write the remote buffer, then performing the

remote write followed by notifying the remote process image. The eventcounts are as dif-

ficult to use for the first synchronization phase as thesync notify/sync wait mech-

anism. They can be easier to use for the second part, especially if we need notifications

from several images before proceeding. The advantages of eventcounts over notifies are

reduced space cost, in most of the examples we showed, and composability, enabling users

to integrate seamlessly modular CAF solvers developed by different parties.
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Chapter 10

Towards Communication Optimizations for CAF

A major appeal of a language-based programming model over library-based models such

as MPI is that a compiler can more readily assist a programmerin tailoring the code to get

high performance on the desired platform. It would be desirable to have a CAF compiler

perform automatic communication optimization of CAF programs; however, we first need

to create a framework that will guarantee the correctness ofsuch transformations. In this

chapter, we start by describing a memory consistency model for CAF and its implications

on statement reordering, followed by a dependence analysisstrategy in the presence of

co-array accesses. In Chapter 6 we mentioned that communication vectorization for CAF

codes such as NAS CG led to a performance improvements of up to30%; in this chap-

ter we present a dependence-based communication vectorization algorithm, followed by a

proof of correctness and transformation details. We conclude the chapter by presenting the

challenges of performing vectorization in the presence of resource constraints, and discuss

future profitable dependence-based CAF optimizations.

10.1 A Memory Model for Co-Array Fortran

Having a well-defined memory model for Co-Array Fortran is ofutmost importance: CAF

users must know what is the expected behavior of their programs, and compiler writers

must understand the safety conditions for automatic transformation of CAF codes. For

parallel languages, the memory model has to take into account communication and syn-

chronization.

As described in Section 1.1, CAF users can express remote reads (or GETs) and remote

writes (or PUTs) at language level, using the bracket notation for remote references. The



129

CAF language, including our extensions described in Section 3.1, provides several syn-

chronization primitives:sync all, sync notify andsync wait. In Chapter 9, we

proposed eventcounts as a space-efficient extension to the CAF synchronization mecha-

nism.

In Section 3.1 we specified the semantics ofsync notify andsync wait with

respect toPUTs. Next, we describe in more detail the relation between synchronization and

communication. For the purpose of exposition, we will definethe functionversion(x, P )

for each co-array variablex and every process image P, using the following rules:

1. for every co-arrayx, on every process image P,version(x, P ) = 0 at the start of

program execution.

2. for each local write performed by a process image P to its local part of co-arrayx,

version(x, P ) = version(x, P ) + 1.

3. for every remote write performed by a process image P to thelocal part of co-array

x on image Q,version(x, Q) = version(x, Q) + 1.

The functionversion(x, P ) denotes the version number (or version) of the variablex

on P. To indicate that a local write to co-arrayx on image P has the effectversion(x, P ) =

n, we will the notationx = V n. To indicate that a remote write performed by process image

P to process image Q has the effectversion(x, Q) = n, we use the notationx[Q] = V n.

Figure 10.1(a) shows the ordering between notifies andPUTs. If process image Q

writes the co-arrayx on P with version numbern, then sends a notify to P; after P executes

a matching wait it can only read from its local portion ofx a versionk with k ≥ n. k might

be greater thann because Q or some other process image might subsequently perform one

or more writes tox on P after the synchronization point, that increase the version number

of x observed by P.

Figure 10.1(b) shows the ordering between notifies andGETs. Process image Q writes

its local part of the co-arrayx with version numbern, and then sends a notify to P; after

executing a matching wait, P will read from Q the value ofx and is guaranteed to get a
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P Q

sync_wait(Q)
sync_notify(P)

x[P]=Vn

read x

(a)sync notify andPUTs

P Q

read x[Q]

x=Vn

sync_notify(P)
sync_wait(Q)

(b) sync notify andGETs

Figure 10.1: Relationship betweensync notify/sync wait and remote accesses.

versionk with k ≥ n. k might be greater thann because Q or some other process image

might subsequently perform one or more local writes tox after the synchronization point,

writes that will increase the version number ofx on Q observed by P.

In bothsync notify/sync wait cases (a) and (b), P is guaranteed that Q has fin-

ished its local computation before the synchronization point and has finished all itsGETs
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P Q

wait_eventcount(e, i, 1)
advance_eventcount(e, P, i, 1)

x[P]=Vn

read x

(a) eventcounts andPUTs

P Q

read x[Q]

x=Vn

advance_eventcount(e, P, i, 1)
wait_eventcount(e, i, 1)

(b) eventcounts andGETs

Figure 10.2: Relationship between eventcounts and remote accesses.

issued before callingsync notify. However, P⁀is not guaranteed thatPUTs issued by Q

to other process images have completed.

Figure 10.2(a) shows the ordering between eventcount operations andPUTs. If process

image Q writes the co-arrayx on P with version numbern, then advances by1 the entryi
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P Q

sync_all() sync_all()

read x

x[P]=Vn

(a) barriers andPUTs

P Q

sync_all() sync_all()

read x[Q]

x=Vn

(b) barriers andGETs

Figure 10.3: Relationship between barriers and remote accesses.

of eventcounte on P; after P executes a matching wait it can only read from itslocal portion

of x a versionk with k ≥ n. k might be greater thann because Q or some other process

image might subsequently perform one or more writes tox on P after the synchronization

point, that increase the version number ofx observed by P.

Figure 10.1(b) shows the ordering between notifies andGETs. Process image Q writes

its local part of the co-arrayx with version numbern, and then advances by1 the entryi

of eventcounte on P; after executing a matching wait, P will read from Q the value of x

and is guaranteed to get a versionk with k ≥ n. k might be greater thann because Q or
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some other process image might subsequently perform one or more local writes tox after

the synchronization point, writes that will increase the version number ofx on Q observed

by P.

In both eventcount cases (a) and (b), P is guaranteed that Q has finished its local compu-

tation before the synchronization point and has finished allits GETs issued before advanc-

ing the eventcount. However, P⁀is not guaranteed thatPUTs issued by Q to other process

images have completed.

Figure 10.3(a) shows the ordering between barriers andPUTs. If process image Q

writes the co-arrayx on P with version numbern, and then sends a notify to P, P will then

read from its local portion ofx a versionk with k ≥ n. k might be greater thann because

Q or some other process image might subsequently perform oneor more writes tox on

P after the synchronization point, writes that will increase the local version number ofx

observed by P.

Figure 10.3(b) shows the ordering between barriers andGETs. Process image Q writes

its local part of the co-arrayxwith version numbern, and then synchronizes using a barrier

with P; P will then read from Q a versionk of x and is guaranteed thatk ≥ n. k might be

greater thann because Q or some other process image might subsequently perform one or

more local writes tox after the synchronization point, writes that will increasethe version

number ofx on Q observed by P.

In both barrier cases (a) and (b), P is guaranteed that Q has finished its local computation

and remote reads before the barrier. P is also guaranteed that remote writes issued by Q to

other process images have completed.

There are several excellent reviews of memory consistency models [8,87,88,144]. Per-

vasive throughout memory consistency model research is a tension between theconstraints

imposed by any particular memory model and theperformanceof programs written using

it. More constraints make programming easier, but generally hurt performance. Fewer

constraints means that a programmer has to be more careful when writing code and using

the available communication and synchronization mechanisms, but the benefit is that of
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increased performance. We review several memory consistency models and then discuss

the memory model we propose for CAF.

Definition 9.1 In a strict consistencymodel, any read to a memory location X returns

the values stored by the most recent write operation to X [182].

Definition 9.2. In a sequentially consistentmodel, the result of any execution is the

same as if the reads and writes were executed in some sequential order, and the oper-

ations of each individual processor appear in this sequencein the order specified by its

program [129].

Definition 9.3 In a processor consistencymodel, writes done by a single processor are

received by all other processors in the order in which they were issued, but writes from

different processors may be seen in a different order by different processors [14,89].

In the presence of synchronization variables, two more memory consistency models are

defined.

Definition 9.4 In aweak consistencymodel [75], the following properties hold:

1. Accesses to synchronization variables are sequentiallyconsistent.

2. No access to a synchronization variable may be performed until all previous writes

have completed everywhere.

3. No data access (read or write) may be performed until all previous accesses to syn-

chronization variables have been performed.

Definition 9.5 A release consistencymodel [88] uses locks on areas of memory, and

propagates only locked memory as necessary. The basic operationsacquireandreleasecan

be performed on locks. Release consistency is defined as follows:

1. Before accessing a shared variable, all previous acquires done by the process must

have completed successfully.

2. Before a release is performed, all previous reads and writes done by the process must

have completed.
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3. The acquire and release accesses must be sequentially consistent.

We formally define a memory consistency model for CAF as follows:

Definition 9.6 CAF has the following synchronization mechanisms:sync all,

sync team, sync notify, sync wait and eventcounts. Data movement and syn-

chronization interact in the following ways:

1. Writes performed by a process image to overlapping sections of its local co-array

parts are observed by that process image in the order in whichthey were issued.

2. Writes performed by a process image to overlapping sections of remote co-array

parts are observed by the destination process image in the order in which they were

issued.

3. If a process image P sends async notify to process image Q, then upon comple-

tion on Q of the matchingsync wait, all PUTs to co-array parts on Q and allGETs

of co-array parts on Q issued by P before issuing thesync notify are complete.

4. If a process image P advances an eventcount on process image Q, then upon com-

pletion on Q of the matchingwait eventcount all PUTs to co-array parts on Q

and allGETs of co-array parts on Q issued by P before advancing the eventcount are

complete.

5. After execution of async all, for any process image P, anyPUTs orGETs issued

by P before thesync all are complete.

6. After execution of async team, for any process image P, anyPUTs orGETs issued

by P before thesync team are complete.

This memory consistency model is weaker than that proposed in the latest CAF draft [154].

The main difference is that in the proposed CAF standard any synchronization operation

implies that all previousPUTs andGETs have completed, while in the memory model that
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we propose the primitivessync notify andsync wait lead only to pairwise commu-

nication completion. Our model enables the overlap of communication issued by a process

image P with different process images, thus decreasing exposed data transfer latency. The

original CAF model contains critical sections; however, parallel programs using critical

sections will not achieve scalable performance due to the serialization that critical sections

require.

We can view thesync notify, sync wait andsync all primitives as perform-

ing accesses to synchronization objects. Considering the ordering and constraints we de-

scribed forPUT/GET and synchronization in CAF, the memory consistency model wepro-

pose for Co-Array Fortran is weaker than both the weak and release consistency models.

For weak consistency, an access to a synchronization variables implies that all previous

writes have completed. For release consistency, before performing a release, all previous

reads and writes done by the process must complete. In both cases, the achieved effect

of a synchronization operation by a process is that of a fence, which completes all writes

performed by the process. In the case of a distributed memorysystem such as a cluster,

with shared memory located on several cluster nodes, this might unnecessarily expose data

transfer latencies. Consider the case where a process imagep initiates a bulk remote write

to shared data residing on a remote node, then initiates a bulk remote write to shared data

residing on a second node, after whichp invokes a synchronization operation. Upon the ex-

ecution of the synchronization, both writes must complete,when it might more profitable to

wait first for the completion of one of the writes, perform some computation, then wait for

the completion of the second write. For CAF, we propose that pairwise synchronization op-

erationssync notify andsync wait have the effect of pairwise completion of com-

munication. We chose this memory model because it is conducive to high-performance, so

CAF programs can overlap data transfers to different imagesand thus reduce exposed data

transfer latency.

The CAF memory model is weaker than the Java memory consistency model [90,131].

We do not provide any guarantees for CAF programs that contain data races. In Java, ac-
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cesses to shared variables can be protected with locks, using synchronized methods.

The synchronization model of CAF does not contain locks, andit only enables trivial shar-

ing of data. Dotsenko [72] considers locks for more general coordination. A benefit of

the Java memory model is that a programmer can control accesses to shared data at a finer

granularity level in Java than in CAF, by choosing on which shared object to operate. In

CAF, a call tosync notify from process image P to process image Q would lead to

pairwise completion of allPUTs issued by P to Q, even if thePUTs write to separate co-

arrays. A recent refinement of the Java memory model [131] provides new guarantees for

operations usingvolatile variables: when thread A writes to a volatile variable V, and

thread B reads from V, any variable values that were visible to A at the time that V was

written are guaranteed now to be visible to B. The CAF model isweaker than the Java

memory model. If process image P writes the co-arrayx on Q with version numbern, and

then sends async notify to process imageR, then process imageR is not guaranteed

to read a versionk of x on Q such thatk ≥ n, as shown in Figure 10.4. However, if process

image P writes the co-arrayx on Q with version numbern, then sends async notify

to process image Q, Q performs a matchingsync wait, followed by async notify

to R, then R, upon execution of a matchingsync wait from Q, is guaranteed to read

a versionk of x on Q such thatk ≥ n. k might be greater thann because Q or some

other process image might have subsequently performed one or more writes tox on Q. A

graphical representation of this scenario is shown in Figure 10.4(b).

For the CAF memory model that we propose to enable data transfer latency hiding, it

is crucial that thesync notify primitive be non-blocking. Ifsync notify is non-

blocking then a process image P can issue a non-blockingPUT to process image Q, fol-

lowed by async notify to Q, and immediately afterwards issue a non-blockingPUT

to R, followed by async notify to R. The net effect is that thePUTs to Q and R may

overlap, which reduces the exposed data transfer latency. If sync notifywere blocking,

then it would make it harder to hide data transfer and synchronization latency.
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P Q

x[Q]=Vn

read x[Q]

sync_notify(R)

R

sync_wait(P)

(a)R is not guaranteed to read a versionk of x[Q] with k ≥ n.

P Q

sync_wait(P)

x[Q]=Vn

read x[Q]

sync_notify(Q)

R

sync_wait(Q)

sync_notify(R)

(b) R is guaranteed to read a versionk of x[Q] with k ≥ n.

Figure 10.4: Relationship between synchronization and remote accesses among multiple

process images.

10.2 Implications of the CAF Memory Model for Communication Op-

timization

Based on the CAF memory model that we described, we can infer several rules limiting

compiler-performed motion of code performing remote accessesunless analysis proves
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that the code motion does not result in conflicting concurrent operations on shared data.

• For any process image P,PUTs to remote co-array data associated with P cannot

move after async notify to P unless it can be proven it is safe; otherwise, the

destination process image might read a value older than the one written by thePUT.

• PUTs andGETs cannot move before a barrier. In the case of aPUT from process

image P to co-arrayx on process image Q, the barrier completion might indicate toP

that it is safe to perform thePUT, e.g., Q is done reading its local part of co-arrayx.

Moving thePUT before the barrier would then lead to a race condition. In thecase of

aGET by process image P of co-arrayx on process image Q, the barrier completion

might indicate to P that it is safe to perform theGET, e.g., Q is done writing its local

part of co-arrayx. Moving theGET before the barrier would then lead to a race

condition.

• PUTs andGETs cannot move after a barrier. In the case of aPUT from process image

P to co-arrayx on Q, the barrier would indicate to Q that thePUT issued before the

barrier has completed, and it is safe to read its local part ofx. Moving thePUT after

the barrier might lead to a situation where thePUT is not completed, but Q assumes

that it is completed, accesses its local co-array part ofx and reads a value older than

the one it it supposed to read. In the case of aGET by process image P of co-array

x on Q, the barrier would indicate to Q that theGET issued before the barrier has

completed, and it is safe to write its local part ofx. Moving theGET after the barrier

might lead to a situation where theGET is not completed, but Q assumes that it is

completed, writes its local co-array part ofx and creates a race condition.

• For a co-arrayx, an access written asx[p], even ifp corresponds to the local image,

is treated as communication. However, a CAF runtime libraryis free to recognize this

case and implement it using a memory copy. In either case, completion is enforceable

through synchronization statements.
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Based on the following observations, we can make a conservative requirement for cor-

rectness of CAF transformations: in the absence of detailedanalysis of local and remote

data accesses both before and after communication, for a transformation of data race free

programs to be correct, it should not move communication before or after synchronization

points, and it should not reorder remote accesses to the samememory locations.

10.3 Dependence Analysis for Co-Array Fortran Codes

In this section, we present a strategy for performing dependence analysis of Co-Array For-

tran codes. Dependence analysis for two Fortran 95 array references involves analyzing

the set of pairs of corresponding subscripts, generating a set of constraints that all need

to be satisfied in order to have a dependence, and analyzing ifthat constraint set can be

solved within the context of the pair of references [17] (forexample, when one or mul-

tiple loop indices are involved in the subscript pairs, an additional constraint is that each

loop index can have only the values specified by its corresponding loop header). To per-

form dependence analysis for local and remote co-array references, we propose to con-

sider the set of corresponding pairs of subscripts for localdimensions, but to augment that

set with corresponding pairs of co-subscripts when present. This approach enables CAF

compiler writers to leverage existing dependence analysistechniques for sets of subscript

pairs. Once dependence analysis results are available, we present a correctness theorem for

remote access reordering transformations. Our strategy works in the presence of the user-

defined co-space extension to CAF proposed by Dotsenko [72].We review the co-space

extension in Section 10.3.1, describe our dependence analysis strategy in Section 10.3.2,

and present a correctness theorem for dependence-based communication transformations

in Section 10.3.3.

10.3.1 Co-space Types and Co-spaces Operators

To aid compiler analysis and enable users to organize process images, Dotsenko [72] pro-

posed extending CAF withco-spaces. The co-space concept was inspired by MPI commu-
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nicators; it enables users to organize process images into groups, with each group poten-

tially having its own topology. There are three types of co-spaces:

• Cartesianco-spaces correspond to MPI Cartesian communicators; process images

are organized into a Cartesian multi-dimensional grid. Neighbors are referenced

using theneighbor operator. Consider a Cartesian co-spacec with k dimen-

sions, and a process image inc with the Cartesian coordinates(p1, p2, ..., pk): then

neighbor(c, i1, i2, ..., ik), whereij , j = 1, k are integer expressions, refers to the

process image with the coordinates(p1 + i1, p2 + i2, ..., pk + ik) within the Cartesian

co-spacec.

• graphco-spaces correspond to the MPI graph communicators. Each process image

has a list of successor process images, specified at co-spacecreation, such that there

is a directed edge from the current process image to each successor process image

in the list in the graph co-space. Consider a graph co-spacec and a process image P

within c; to refer to itsk-th neighbor in the list of adjacent process images, P uses the

operatorneighbor(c, k), wherek is an integer expression.

• groupco-spaces simply impose an order relation on a set of processimages; to refer

to thek-th process image in the group co-spacec, one uses the operatorneighbor(c, k).

10.3.2 Dependence Analysis Using Co-space Operators

Let’s consider two co-array references for which we want to perform dependence analysis.

Each reference can be one of the following:

• local co-array reference

• co-array reference to a remote image specified using theneighbor operator within a

Cartesian, graph, or group co-space
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We need to consider six cases. For brevity, we use
−→
i to refer to< i1, i2, ..., ik >,

−→
j to

refer to< j1, j2, ..., jk >, −→r to refer to< r1, r2, ..., rm >, and−→q to refer to

< q1, q2, ..., qn >.

1. a local referencea(
−→
i ) and a local referencea(

−→
j ). We consider the set of subscript

pairs< il, jl >, l = 1, k for dependence analysis.

2. a local referencea(
−→
i ) and a remote referencea(

−→
j )[neighbor(c,−→r )] wherec cor-

responds to a Cartesian co-space. We consider the set of subscript pairs< il, jl >,

l = 1, k and< 0, rs >, s = 1, m for dependence analysis.

3. a local referencea(
−→
i ) and a remote referencea(

−→
j )[neighbor(c, r)] wherec corre-

sponds to a graph or group co-space. We consider the set of subscript pairs< il, jl >,

l = 1, k for dependence analysis, and assume that theneighbor operator can induce

a dependence in the processor space.

4. two remote references using Cartesian co-spacesa(
−→
i )[neighbor(c1,

−→q )] and

a(
−→
j )[neighbor(c2,

−→r )]. If c1 6= c2, then we consider the set of subscript pairs

< il, jl >, l = 1, k, for dependence analysis, and assume that there is a dependence

within the processor space. Ifc1 = c2, then we consider the set of subscript pairs

< il, jl >, l = 1, k and< qs, rs >, s = 1, m for dependence analysis.

5. two remote references using graph or group co-spacesa(
−→
i )[neighbor(c1, q)] and

a(
−→
j )[neighbor(c2, r)]. If c1 6= c2, then we consider the set of subscript pairs<

il, jl >, l = 1, k, for dependence analysis, and assume that there is a dependence

within the processor space. Ifc1 = c2, then we consider the set of subscript pairs

< il, jl >, l = 1, k and< q, r > for dependence analysis.

6. a remote reference using a Cartesian co-spacea(
−→
i )[...] and a remote reference

a(
−→
j )[...] using a graph or group co-space. We consider the set of subscript pairs

< il, jl >, l = 1, k, for dependence analysis, and assume that there is a dependence

within the processor space.
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With these rules, we define the following types of dependences involving co-array ac-

cesses:

Definition 9.7 Dependences between local co-array accesses arelocal dependences.

Definition 9.8 Dependences involving at least one remote co-array reference arecross-

processor dependences.

10.3.3 Discussion

If dependence analysis determines that remote co-array references are engaged in true,

anti-, or output dependences, any code transformation mustpreserve those dependences to

avoid violating the CAF memory consistency model.

One special case is when the local co-array image is referenced using bracket notation

with an expression that cannot be analyzed at compile time. We have two options: either

consider the possibility of dependences between local accesses and remote accesses, or pass

the compiler a special flag to inform it that references to local parts of co-arrays are always

specified with bracket notation. Such a requirement is not anunreasonable one, since the

two-level memory feature of CAF leads to the users explicitly differentiate between local

and remote accesses.

We recommend that CAF users employ the neighbor operator with constant arguments

whenever possible when referring to remote co-arrays. Thisleads to code that a CAF

compiler can more readily analyze and optimize than the one that uses general expressions

for co-subscripts.

We can use dependences and the proposed CAF memory consistency model to guide

cafc automatic transformations. Allen and Kennedy [17] define reordering transforma-

tions as follows:

Definition 9.9 A reordering transformationis any program transformation that merely

changes the order of execution of the code, without adding ordeleting any effects of exe-

cution of statements.

A CAF compiler can perform reordering transformation, but also remote reference re-
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ordering transformations, defined as follows:

Definition 9.10A remote reference reordering transformationreorders remote accesses

with respect to their original statements. In the case of a remote read, the remote read is

performedbeforethe original statement, the off-processor values are savedin a temporary,

and the temporary is used instead of the original remote readreference. In the case of

a remote write, the value to be written is saved in a temporary, and the remote write is

performedafter the original statement.

Theorem 9.1A CAF transformation that performs statement reordering and remote

reference reordering does not change the meaning of a program without data races if it does

not move remote accesses before or after synchronization statements and if it preserves

local and cross-processor dependences.

Allen and Kennedy [17] prove by contradiction that transformations that perform state-

ment reordering without changing dependences preserve themeaning of a program. Con-

sider a program with the statementsS1, S2, ..., Sn, such that each statement reads values

produced by previous statements and in turn outputs new values. Consider a permutation

S ′
1, S ′

2, ...,S ′
n of the program statements induced by a reordering transformation. Assume

that the meaning of the program after reordering is changed,and letS ′
k be the first state-

ment which produces a different output. This is due toS ′
k reading a different input valuex

than in the original program execution. This can happen in three cases:

1. A statementS ′
i writesx with the value thatS ′

k was supposed to readafterS ′
k reads it.

This violates a true dependence, and contradicts the assumption that no dependence

is violated.

2. A statementS ′
i that in the original program execution was writingx after S ′

k now

writesx beforeS ′
k reads it. This violates an anti-dependence, and contradicts the

assumption that no dependence is violated.

3. A statementS ′
i writesx beforeS ′

k with the value thatS ′
k is supposed to read, but

a statementS ′
j that in the original program execution was writingx beforeS ′

i now
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writes it afterS ′
i. This violates an output dependence, and contradicts the assumption

that no dependence is violated.

To extend that result to CAF, notice that each processor’s dependences are preserved,

and we are left to prove that after transformations, each processor reads/writes the same

data when executing remote accesses. By performing remote reference reordering with-

out crossing synchronization statements, we are guaranteed to perform the same remote

accesses as in the original program. For a remote read in a program free of data races,

the remote data is already available after some prior synchronization point, otherwise the

original program contained a race condition; this implies that after remote read reordering

the local process fetches the same remote value. For a remotewrite to process image P,

note that there must be a synchronization statementS that followed the remote write and

guaranteed that the write was delivered toP, because in a data race free program all con-

flicting accesses are separated by synchronization. Since after the reordering of the remote

write no synchronization statements are crossed, the same synchronization statementSsig-

nals the completion of the remote write to P, so P reads the same result after the execution

of its matching synchronization statement. Therefore, thestatement and remote reference

reordering transformation preserves the meaning of a data race free program.

10.4 Dependence-based Vectorization of CAF Codes

CAF codes with remote accesses can be analyzed using extensions of existing dependence

analysis techniques and optimized by a CAF compiler. In thissection, we describe a simple

dependence-based vectorization algorithm, prove its correctness, present transformation

details, and then discuss what steps are necessary to further tailor communication vector-

ization to various target architectures.

We review several terms used in the algorithm.

Definition 9.11 A control-flow graph(CFG) is a directed graph representation of all

possible paths that can be taken during program execution. The graph nodes correspond

to basic blocks, which are straight line sequences of code without any jumps. The graph
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procedure VectorizeComm(procedure P)
scalarize array sections references [17]
assemble the set of subscript pairs for dependence analysis(see Section 10.3)
perform dependence analysis [17]
determine the set of outermost loopsLoopSet

that do not contain synchronization statements.
foreach loop Lout in LoopSet

VectorizeLoop(Lout,Lout)
end
perform procedure splitting for all temporaries created during the vectorization process

and used with CAF array syntax expressions (see Section 5.1)

Figure 10.5: The driver procedure for the vectorization algorithm,VectorizeComm.

edges correspond to jumps in the program. The CFG has two special nodes, theentrynode,

through which all control flow enters the graph, and theexitnode, through which all control

flow exits the graph.

Definition 9.12A CFG nodey postdominates a CFG nodex if every path fromx to the

exit node passes throughy.

Definition 9.13A statementy is said to becontrol dependenton another statementx if

1. there exists a nontrivial path fromx to y such that every statementz 6= x in the path

is postdominated byy.

2. x is not postdominated byy.

Definition 9.14A control dependence graphis graph that represents the control depen-

dences between CFG blocks.

Definition 9.15For each loopL, we define itsloop nesting level, level(L), as follows

1. level(L) = 0 iff ¬∃L′ such thatL ⊂ L′.

2. level(L) = n + 1 iff ∃L′ such thatlevel(L′) = n andL ⊂ L′ and¬∃L′′ such that

L ⊂ L′′ ⊂ L′.
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procedure VectorizeLoop(L, Lout)
foreach outer loopLi insideL itself

VectorizeLoop(Li, Lout)
foreach remote referenceRef in the body ofL

Lmaxdep = max{level(L′)|L′ carries a dependence on the statement
containingRef}

if (Ref is a remote read)
Lvect(Ref) = max(Lmaxdep + 1, level(Lout))

else
Lminctrldep = min{level(L′)|L′ such thatRef ∈ L′ and the statement

containingRef is not control dependent on any non-loop header statement inL′}
Lvect(Ref) = max(Lmaxdep + 1, level(Lout), Lminctrldep)

end
end
foreach referenceRef such thatLvect(Ref) = level(L)

call AllocateTemporariesAndRewriteReference(L, Lvect(Ref), Ref )
call GenerateRemoteAccessCode(L, Lvect(Ref), Ref )

end

Figure 10.6: TheVectorizeLoopprocedure.

function ClassifyCAFReference(L, Lvect, Ref )
Let L′

1, ...,L′
k be the loops containingRef , such thatlevel(L′

i) ≥ Lvect, for i = 1, k
Let L1, L2, ...,Lp be the loops with index variables used

in the subscript expressions forRef .
Let Li,lb, Li,ub be the lower bound, upper bound for loopLi

Let Li,stride, Li,idx be the stride, loop index variable for loopLi

if eachLi,idx is used in exactly one affine expression subscriptαiLi,idx + βi

and eachαi andβi are constant w.r.t.L′
1, L

′
2, ..., L

′
k

return AFFINE
else

return NON AFFINE
end

Figure 10.7: The procedureClassifyCAFReference.

We present the driver procedure for our dependence-based communication vectoriza-

tion algorithm,VectorizeComm, in Figure 10.5. The algorithm first scalarizes array section

references, e.g. transforms Fortran 95 array section references into loop nests, as described

in Allen and Kennedy [17]. Next, it assembles a set of subscript pairs, for both local di-
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mensions and for co-dimensions, as described in Section 10.3. After that, it performs data

dependence analysis of corresponding subscript pairs using techniques described in Allen

and Kennedy [17].

To computelevel(L) for every loop, we would perform a recursive preorder traversal

of the control dependence graph, and assign to each loop either the nesting level 0, if it

does not have any loop ancestors, or the nesting level of the nearest loop ancestor plus 1.

The vectorization algorithm determines the set of outermost loops that do not contain

synchronization statements. Formally,

LoopSet = {L|L does not contain any synchronization statements and¬∃L′ such that

L ⊂ L′ andL′ does not contain any synchronization statements}

To determineLoopSet, we would construct the control dependence graph, perform a

postorder traversal of the graph, and mark all the loops thatcontain synchronization state-

ments. Next, we would perform a preorder traversal of the graph, and upon encountering

a loop which is not marked we would add it toLoopSet and stop traversing the successors

of that loop in the control dependence graph.

Next,VectorizeComminvokes the routineVectorizeLoopfor each loop inLoopSet. The

procedureVectorizeLoopfor a loopL is presented in Figure 10.6. For each remote co-array

referenceRef in the statements immediately insideL, we first determine the loop nesting

level where it can be vectorized. For both read and write references, we defineLmaxdep as

the maximum nesting level of a loop carrying a dependence on the statement containing

Ref . For remote reads, the loop nesting level at which vectorization can be performed

is max(Lmaxdep, level(Lout), whereLout is the nesting level of the loop inLoopSet that

containsL. For remote write accesses, we also determineLminctrldep, the minimum nesting

level of a loop such that the statement containingRef is not control dependent on any

non loop header statement insideL′. The loop nesting level at which vectorization can

be performed is thenmax(Lmaxdep, level(Lout), Lminctrldep). VectorizeLoopinvokes the

procedureAllocateTemporariesAndRewriteReference, described in Figure 10.8, to allocate

temporaries for data and possibly indices and to rewrite thereference. Finally, it invokes
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procedureAllocateTemporariesAndRewriteReference(L,Lvect, Ref )
Let L′

1, ...,L′
k be the loops containingRef , such thatlevel(L′

i) ≥ Lvect, for i = 1, k
if the co-array variable and all the subscripts ofRef are not written insideL′

1, ...,L′
k

declare a buffertemp and replaceRef with a reference to the buffer,
normalizing the indices

else
Let L1, L2, ...,Lp be the loops with index variables used

in the subscript expressions forRef .
Let Li,lb, Li,ub be the lower bound, upper bound for loopLi

Let Li,stride, Li,idx be the stride, loop index variable for loopLi

switch ClassifyCAFReference(L,Lvect, Ref)
caseAFFINE

declare a temporary buffertemp of shape
(1 : (L1,ub − L1,lb)/L1,stride + 1, ..., 1 : (Lp,ub − Lp,lb)/Lp,stride + 1)

replace the referenceRef with temp
replace each subscriptαiLi,idx + βi with (Li,idx − Li,lb)/Li,stride + 1

caseNON AFFINE
ns=number of subscript expressions using index variables of the loopsL1,...,Lp

declareitemp with shape1 : ns, ..., (Li,ub − Li,lb)/Li,stride + 1, ...
insert a loop nestLitemp immediately beforeLvect, duplicating

the loop headers ofL1, ...,Lp, to fill in itemp
for s = 1, ns

synthesize assignment in the innermost loop ofLitemp

to itemp(s,...,(Li,idx − Li,lb)/Li,stride + 1, ...) of
subscript expression numbers from Ref

end
declare a temporary buffertemp of shape
(1 : (L1,ub − L1,lb)/L1,stride + 1, ..., 1 : (Lp,ub − Lp,lb)/Lp,stride + 1)

replaceRef by temp((L1,idx −L1,lb)/L1,stride + 1, ..., (Lp,idx −Lp,lb)/Lp,stride + 1)
end switch

end if

Figure 10.8: The procedureAllocateTemporariesAndRewriteReference.

the procedureGenerateRemoteAccessCode, shown in Figure 10.9, to synthesize code that

accesses the remote data.

The procedureClassifyCAFReference, presented in Figure 10.7, determine whether the

reference is affine or non affine. Consider the loopsL1, L2,..,Lp with indicesL1,idx, L2,idx,

..., Lp,idx used in the subscript expressions for the remote referenceRef . For Ref to be

affine, each subscript must be an affine expression of exactlyone of loop index of the
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enclosing loops, such asαiLi,idx +βi, where all variables used in the expressions ofαi and

βi are not written inside any of the loopsL1, L2, ..,Lp, for i = 1, p.

The procedureAllocateTemporariesAndRewriteReference, shown in Figure 10.8, allo-

cates temporaries for data and possibly indices and rewrites the reference. ConsiderL′
1,

L′
2, ..., L′

k the loops that contain the referenceRef , with a nesting level greater or equal

than the level at which vectorization can be performed. If the co-array variable and all the

variables used for subscript expressions forRef are not written inside the loopsL′
i, for

i = 1, k, then we declare a buffertemp and replaceRef with a reference totemp. The

procedure would also normalize the indices oftemp. Otherwise, we consider the loopsL1,

L2, ...,Lp such that their indicesL1,idx, L2,idx, ...,Lp,idx are used in the subscript expression

for Ref . We denote the lower bounds of the loops byLi,lb, for i = 1, p, the upper bounds

by Li,ub, for i = 1, p, and the loop strides byLi,stride, for i = 1, p.

AllocateTemporariesAndRewriteReferenceinvokesClassifyCAFReferenceto determine

if Ref is affine or non affine. If the reference is affine, then the vectorization algorithm

will use a regular CAF array section remote reference to access the remote data, that

will be converted into communication code as described in Section 4.3. The procedure

AllocateTemporariesAndRewriteReferencedeclarestemp, a temporary buffer for the off-

processor data, of shape(1 : (L1,ub−L1,lb)/L1,stride+1, 1 : (L2,ub−L2,lb)/L2,stride+1, ..., 1 :

(Lp,ub −Lp,lb)/Lp,stride +1). Next, the referenceRef is replaced with a reference totemp,

and each affine subscriptαiLi,idx + βi will be replaced with its correspondent subscript

within temp, (Li,idx − Li,lb)/Li,stride + 1.

If the reference is non affine, then we will use an Active Message to perform the re-

mote access. Active Messages [190] (abbreviated AM) were reviewed in Section 2.1.2;

a sender issues a message containing an AM handler identifierand data. On the re-

ceiving side, an AM dispatcher first determines the AM handler responsible for process-

ing the message, then invokes the handler and passes it the message data. In the case

Ref is non affine, the current process image would collect the local indices for the re-

mote co-array data and send them in an AM.AllocateTemporariesAndRewriteReference



151

procedureGenerateRemoteAccessCode(L, Lvect, Ref )
Let L′

1, ...,L′
k be the loops containingRef , such thatlevel(L′

i) ≥ Lvect, for i = 1, k
if (Ref is a remote read reference)

if the co-array variable and all the subscripts ofRef are not written insideL′
1, ...,L′

k

insert a Co-Array Fortran statement to assign the remote value
to temp immediately before loopLvect

else
Let L1, L2, ...,Lp be the loops with index variables used

in the subscript expressions forRef .
Let Li,lb, Li,ub be the lower bound, upper bound for loopLi

Let Li,stride, Li,idx be the stride, loop index variable for loopLi

switch ClassifyCAFReference(L,Lvect, Ref)
caseAFFINE

insert assignment of the remote reference
Ref(..., αiLi,lb + βi : αiLi,ub + βi : αiLi,stride, ...)
into temp(..., 1 : (Li,ub − Li,lb/Li,stride + 1, ...)
immediately before the loopLvect

caseNON AFFINE
generate an AM handler to pack the remote referenceRef into temp
insert AM handler invocation beforeLvect, passingitemp

end switch
else

if the co-array variable and all the subscripts ofRef are not written insideL′
1, ...,L′

k

insert a CAF statement that assignstemp to the remote section immediately afterL
else
switch ClassifyCAFReference(L,Lvect, Ref)

caseAFFINE
insert remote assignment intoRef(..., αiLi,lb + βi : αiLi,ub + βi : αiLi,stride, ...)

from temp(..., 1 : (Li,ub − Li,lb)/Li,stride + 1, ...) immediately afterLvect

caseNON AFFINE
generate an AM handler to unpacktemp into the remote referenceRef
insert AM handler invocation passingitemp andtemp immediately afterLvect

end switch
end if

Figure 10.9: The procedureGenerateRemoteAccessCode.

determines the number of subscript expressions that use theloop index variablesL1,idx,

..., Lp,idx, denoted byns. Next, it allocates a temporary to hold the indices,itemp, of

shape(1 : ns, (1 : (L1,ub − L1,lb)/L1,stride + 1, 1 : (L2,ub − L2,lb)/L2,stride + 1, ..., 1 :

(Lp,ub − Lp,lb)/Lp,stride + 1). To fill itemp with the values of the local indices forRef ,
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a loop nestLitemp is inserted before the loop at levelLvect, duplicating the loop headers

of the loopsL1, ..., Lp. In the innermost loop ofLitemp, we synthesize an assignment

for each of thens subscript expression, assigning the value of thes-th subscript expres-

sion to itemp(s, (L1,idx − L1,lb)/L1,stride + 1, (L2,idx − L2,lb)/L2,stride + 1, ..., (Lp,idx −

Lp,lb)/Lp,stride + 1). Next, the algorithm declares and allocates a temporary buffer temp of

shape(1 : (L1,ub − L1,lb)/L1,stride + 1, ..., 1 : (Lp,ub − Lp,lb)/Lp,stride + 1), and replaces

Ref by temp((L1,idx − L1,lb)/L1,stride + 1, ..., (Lp,idx − Lp,lb)/Lp,stride + 1).

The procedureGenerateRemoteAccessCode, shown in Figure 10.9, synthesizes code

that accesses the remote data. To perform the remote accesses, we can use either array

section CAF references, for whichcafc generates communication code as explained in

Section 4.3, or use Active Messages. For an active message, the compiler needs to syn-

thesize the handler of the AM and to insert an invocation of the AM into the generated

code. ConsiderL′
1, L′

2, ...,L′
k the loops that contain the referenceRef , with a nesting level

greater or equal than the level at which vectorization can beperformed.

For remote read references, if the co-array variable and allthe variables used for sub-

script expressions forRef are not written inside the loopsL′
i, for i = 1, k, then we insert a

CAF GET of the remote data intotemp, immediately before the enclosing loop at nesting

levelLvect. Otherwise, similar to the procedureAllocateTemporariesAndRewriteReference,

we consider separately the cases of affine and non affine references. If a reference is affine,

then we synthesize a CAF remote read reference fromRef(α1L1,lb + β1 : α1L1,ub + β1 :

α1L1,stride, ..., αpLp,lb +βp : αpLp,ub +βp : αpLp,stride into temp((L1,ub −L1,lb)/L1,stride +

1), ..., (Lp,ub − Lp,lb)/Lp,stride + 1) immediately before the enclosing loop at nesting level

Lvect. If the reference is non affine, then we synthesize an AM handler to pack the remote

referenceRef into temp, then insert an invocation of the AM handler immediately before

the enclosing loop at nesting levelLvect.

For remote write references, if the co-array variable and all the variables used for sub-

script expressions forRef are not written inside the loopsL′
i, for i = 1, k, then we insert a

CAF PUT into the remote data fromtemp, immediately after the enclosing loop at nesting
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levelLvect. Otherwise, similar to the procedureAllocateTemporariesAndRewriteReference,

we consider separately the cases of affine and non affine references. If a reference is affine,

then we synthesize a remote write CAF reference toRef(α1L1,lb + β1 : α1L1,ub + β1 :

α1L1,stride, ..., αpLp,lb +βp : αpLp,ub +βp : αpLp,stride from temp((L1,ub−L1,lb)/L1,stride +

1), ..., (Lp,ub − Lp,lb)/Lp,stride + 1) immediately before the enclosing loop at nesting level

Lvect. If the reference is non affine, then we synthesize an AM handler to unpacktemp into

the remote referenceRef , then insert an invocation of the AM handler immediately after

the enclosing loop at nesting levelLvect.

10.4.1 Dependence-based Vectorization Correctness

Theorem 9.2The transformation performed by the routineVectorizeCommis correct for

data race free programs.

Proof: Any remote access references introduced by theVectorizeLooptransformations

would be inserted inside a loopL from LoopSet or immediately beforeL or immediately

afterL. SinceL does not contain any synchronization statements, in each case no

communication statements would be moved past synchronization points.

The routineVectorizeLoopdoes not hoist a remote read or write referenceRef past the

level of a loop which carries a dependence on the statement containingRef , so it does not

reverse any dependence.

We have proven that the transformationVectorizeCommdoesn’t move any remote ac-

cesses past synchronization points and that it preserves dependences. According to Theo-

rem 9.1, the transformationVectorizeCommdoes not change the meaning of the code for a

data race free program. Thus, the transformation describedby VectorizeCommis correct.

10.4.2 Transformation Details

Temporary buffer management. A question relevant for performance is how temporary

buffers are to be allocated and managed. For performance, the memory for temporary
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buffers should be allocated by the communication library asit sees fit, e.g. perhaps in

pinned physical pages on a Myrinet cluster. The natural language level representation for

temporary buffers is Fortran 95 pointers. However, the use of Fortran 95 pointers might

degrade local performance, because Fortran 95 compilers might conservatively assume

pointer aliasing, and inhibit key optimizations for scalarperformance.

As shown in Chapter 6, procedure splitting is an important optimization for local per-

formance. It transforms pointer references into array arguments, which conveys to the

back-end compiler the lack of aliasing, the fact that the array is contiguous, and the shape

of the local co-array. To get the same benefits for vectorization-introduced temporaries, af-

ter applying vectorization, we could perform procedure splitting and pass array temporaries

as arguments to an inner routine as well.

Vectorization temporaries suitable for procedure splitting are those used in Co-Array

Fortran array section assignment; their shape should also be expressed only by means of

specification expressions with regard to the current procedure. A more aggressive transfor-

mation would be to outline the code between the allocation and deallocation of a temporary

into a procedure, invoke that procedure and pass it the temporaries as array arguments.

Active Messages buffer management.For efficiency reasons, we need to pass to an

AM a vector of indices, in the case of subscripts using array references, or perhaps coeffi-

cients, in the case of multiple affine expressions with respect to the loop variables. Clearly

we want to avoid performing unnecessary data copying and using multiple messages. The

solution we propose is to determine the size of the storage necessary to hold the subscript

information, allocate a vector of length sufficient to hold the subscripts, and then collect

the necessary subscript values in that vector. For aGET, it suffices to send the vector of

subscript triplets for the local dimensions ofRef , in order to to collect the remote data into

a return buffer. For aPUT, we need to transmit both the subscript values and the right-hand

side data for the remote write statement. One alternative isto allocate two separate buffers,

one for subscript values and one for off-processor data; theruntime layer would then copy

them into contiguous storage and then invoke one active message; this leads to extra data
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double precision A(1:100)[*]
integer B(1:100)
double precision C(1:100)
A(B(1:n))[p]=C(1:n)

(a) Example ofPUT using array references for subscripts.

B(1:n) C(1:n)

COMM BUFFER

B(1:n) C(1:n)

padding

(b) Storage management for subscript values and right-handside data.

Figure 10.10: Buffer management for remote writes subscripts and right-hand side data;

padding is used so that the targets of subscript and data pointers each have a 64-bit align-

ment.

copying. A more effective solution is to determine the size of the storage necessary to hold

the subscripts and the right-hand side data, then allocate abuffer large enough to hold both

the indices and the off-processor data, and set up the pointers for indices and data to use

this common storage. To preserve data alignment we must allocate a padding zone between

the subscripts and the data, so that the targets of index and data pointers each have a 64-bit

alignment. For the code fragment presented in Figure 10.10(a), the storage for the indices

B(1:n) and the right-hand sideC(1:n)would be managed as shown in Figure 10.10(b).

Active Message Handlers.Active Messages are flexible means of realizing commu-

nication, however they might be less efficient than Remote Data Memory Access (RDMA)

on certain communication fabrics. For performance, it is preferable to express the vector-

ization using Fortran 95 array sections without indirection arrays for subscript expressions,
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since then a communication library can use an RDMA transfer,and only when this is not

possible we would use Active Messages to perform communication vectorization. For each

vectorized communication event we would generate an AM invocation, inserted before the

loopLvect for remote reads and after the loopLvect for remote writes. We must also gener-

ate an active message handler.

Next, we present the AM handler generation examples for two types of communication

patterns.

Subscripts using indirection arrays.Consider the following loop:

The co-arrayA on the remote imagep is accessed using the subscript vectorB, as shown

in Figure 10.11(a). We present the code we would generate on the source process image

in Figure 10.11(b). To finalize the put, the remote process image would invoke the active

message handler shown in Figure 10.11(c).

Subscripts using multiple affine expressions of the loop index variable. Consider

the loop presented in Figure 10.12(a). The co-arrayA on the remote image p is accessed

on a diagonal subsection. After vectorization, we would generate the code presented in

Figure 10.12(b). To finalize thePUT, the remote process the image would invoke the active

message handler shown in Figure 10.12(c).

10.4.3 Discussion

The procedureVectorizeCommmight not efficiently handle control flow inside a loop body.

For remote reads which are control-dependent on a conditional expression,VectorizeComm

would prefetch a remote section of size proportional to the loop trip count. This might lead

to unnecessary communication. However,VectorizeComminhibits vectorization at the level

of a loopL for remote writes which are control dependent on statementsinsideL. Another

potential solution would be to detect computation slices necessary to determine the remote

elements which are accessed, as described in Daset al [64]. The best choice is application

dependent.

Our vectorization algorithm can be extended immediately towork correctly in the pres-
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ence of natural loops, e.g., loops written usingIF-THEN-ELSE andGOTO statements

instead of using structured programming constructs such asDO-loops orFOR-loops. Nat-

ural loops can be identified by analyzing the control-flow graph [15], and we would not

vectorize a referenceRef past a natural loop if it carries a dependence on the statement

containingRef.

For the sake of exposition, we presented an algorithm that performed vectorization of

remote accesses for co-arrays of primitive types. The algorithm extends immediately to

co-arrays of user-defined types without pointer fields, and to allocatable co-arrays of both

primitive types and user-defined types without pointer fields. The algorithm can also be

applied to co-arrays with allocatable components, where the target of the vectorization is

represented by multiple references to a structure field of primitive type or user-defined type

without pointer fields. For example, references toa%b(1),a%b(2),...,a%b(n) could be

vectorized intoa%b(1:n), wherea is a co-array andb is an allocatable component.

The communication vectorization algorithm would further need to address architectural

constraints. One constraint is buffer size on nodes with limited memory. If full communi-

cation hoisting requires more memory than it is available, than instead of full hoisting of

communication we need to first strip mine the loop which induces the vectorization, then

perform full communication hoisting in the newly created inner loop. A similar method

addresses another architectural constraint: the maximum size of the message that can be

injected into the communication network. If we try to send very large messages, then the

software communication layer will send the message in pieces, with a delay between each

piece. This would expose communication latency, which is not desirable. The solution is

again to strip mine the loop inducing communication vectorization, such that the hoisted

communication size is smaller than the maximum message sizeaccepted by the communi-

cation interconnect. In both cases, determining the appropriate size of the communication

granularity would be machine-dependent and could be performed in a self-tuning step upon

installation of the compiler on that system.
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10.5 Dependence-based Communication Optimizations of CAF

In this chapter, we presented a memory consistency model forCAF, extended existing

dependence analysis techniques to work with both local and remote co-array references,

and presented a dependence-based communication vectorization algorithm. As explained,

this transformation does not move communication statements past synchronization points.

Dependence-based communication optimization include more than just vectorization.

We mention next several cases where dependence analysis canbe used to improve the

performance of CAF codes without moving communication pastsynchronization points.

One opportunity is to reorder communication statements so that bothPUTs andGETs

are initiated early. One such example is in Figure 10.13(a):theGET from process image 2

can be initiated before theI loop nest, and it can be checked for completion after the loop

nest, as shown in Figure 10.13(b). This reordering would exploit non-blocking primitives to

enable hiding the latency of theGET from process image 2 with the computation performed

in theI loop. A CAF compiler could do this automatically by using a simple list-scheduling

algorithm on the dependence graph that issuesGETs as early as possible and delays their

completion as late as possible.

Let’s consider the code fragment presented in Figure 10.13(c). We have an opportunity

to pipelinePUTs to the neighborsup anddown and thus overlap communication with

local computation, with the possible transformation presented in Figure 10.13(d). A CAF

compiler could achieve this effect automatically by first scalarizing the twoPUTs, fusing

theJ loop with the loops generated by thePUTs, strip mining the resulting loop, and then

performing vectorization over the inner loop.

Let’s consider the code fragment presented in Figure 10.13(e), we have the potential

of waiting for GET completion right before the data obtained is used, as shown in Fig-

ure 10.13(f).

The largest benefit of CAF transformations should be achieved when dependence anal-

ysis and synchronization analysis are combined. In Figure 10.14(a) we present a code frag-

ment that contains an opportunity to issue aGET earlier, before an unrelatedsync notify,
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provided we can prove thatP 6= Q. The transformed code is shown in Figure 10.14(b). In

Figure 10.14 we present a code fragment that contain an opportunity to issue aGET before

a barrier: since co-arrayx is written before the first barrier, and no process image accesses

x before the first and the second barrier, it it safe to move theGET before the second barrier

(but not before the first barrier).
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double precision A(1:100)[*]
integer B(1:100)
double precision C(1:100)
integer i
do i=1,n
A(B(i))[p]=C(i)

end do

(a) Example of code using indirection arrays for subscripts

amStorageAllocate(8*n+4*n, transfer_ptr)
SetStoragePointer(ptrIndex, transfer_ptr, 0)
SetStoragePointer(bufferPtr, transfer_ptr, 4*n+paddingSize)
ptrIndex(1:n) = B(1:n)
do i=1,n
bufferPtr(i) = C(i)

end do
invoke AM to perform the remote PUT

(b) Code generation on the source process image

subroutine am_put(A, aShape, indexVector, buffer)
double precision A(1:100)
integer aShape(1)
integer indexVector( aShape(1))
integer i
double precision buffer(1:aShape(1))
do i=1, n
A(indexVector(i))=buffer(i)

end do

(c) Corresponding AM handler

Figure 10.11: Code generation example for remote writes with subscripts using indirection

arrays
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double precision A(1:100, 1:100)[*]
double precision C(1:100)
integer i
k1= ... ! non-constant expression
k2= ... ! non-constant expression
do i=1, n

A(i+k1,i+k2)[p]=C(i)
end do

(a) Example of code using multiple affine expression of loop index variables for subscripts

amStorageAllocate(8*n+4*n, transfer_ptr)
SetStoragePointer(ptrIndex, transfer_ptr, 0)
SetStoragePointer(bufferPtr, transfer_ptr, 4*n+paddingSize)
ptrIndex(1) = k1
ptrIndex(2) = k2
do i=1,n

bufferPtr(i) = C(i)
end do
invoke AM to perform the remote PUT

(b) Code generation on the source process image

subroutine am_put(A, aShape, indexVector, buffer)
double precision A(1:100, 1:100)
integer aShape(1)
integer indexVector(2)
integer i
double precision buffer(1:aShape(1))
do i=1, n
A(i+indexVector(1), i+indexVector(2))=buffer(i)

end do

(c) Corresponding AM handler

Figure 10.12: Code generation example for remote writes with subscripts using multiple

affine expressions of the loop index variables
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DO I=1,N
... compute on A, B ...
END DO

TEMP(1:N) = D(1:N)[2]

... initiate GET of D(1:N)[2]
into TEMP(1:N) ...
DO I=1,N
... compute on A, B
END DO
... wait for GET completion ...

(a) Opportunity to initiate aGET earlier (b) Non-blockingGET

DO J=1,N
... compute A(:,J) ...
END DO

A(0,:)[down]=A(N,:)
A(N+1,:)[up]=A(1,:)

DO I=1,N,S
... compute A(:,I:I+S-1)
start PUT to

A(0,I:I+S-1)[down]
start PUT to

A(N+1,I:I+S-1)[up]
END DO
... wait for PUTs completion ...

(c) Opportunity to pipelinePUTs (d) PipelinedPUTs

A(:,N)=B(1:N)[left]
DO J=1,N
... compute with A(:,J) ...
END DO

DO I=1,N,S
initiate A(:,I:I+S-1)=
B(I:I+S-1)[left]

END DO

DO I=1,N,S
... wait for completion of
GET into A(:,I:I+S-1)
... compute with A(:,I:I+S-1)

END DO

(e)GET/computation overlap opportunity (f) PipelinedGET

Figure 10.13: Opportunities for dependence-based communication optimization of CAF

codes
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x[P]=...
sync_notify(P)
... = x[Q]

initiate GET of x[Q]
x[P]=...
call sync_notify(P)
... wait for GET completion ...

(a) Opportunity to initiate aGET earlier (b) Non-blockingGET before notify

... some process images
write x ...

call sync_all()
... no process images
accesses x ...

call sync_all()
...=x[Q]

... some process images
write x ...

call sync_all()
initiate GET of x[Q]
... no process image

accesses x ...
call sync_all()
... GET must be completed ...

(c) Opportunity to initiate aGET earlier (d) Non-blockingGET before barrier

Figure 10.14: Opportunities for optimization using combined dependence and synchro-

nization analysis.
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Chapter 11

Pinpointing Scalability Bottlenecks in Parallel Programs

To exploit the power of petascale systems composed of tens ofthousands of processors,

parallel applications must scale efficiently. However, writing and tuning complex applica-

tions to achieve scalable parallel performance is hard.

Understanding a parallel code’s impediments to scalability is necessary step for im-

proving performance. Often, an application’s scalabilitybottlenecks are not obvious. They

can arise from a range of causes including replicated work, data movement, synchroniza-

tion, load imbalance, serialization, and algorithmic scaling issues. Having an automatic

technique for identifying scalability problems would boost development-time productivity.

When analyzing an application’s scaling bottlenecks, one should focus on those that

are the most significant. An application’s components with the worst scaling behavior

are often not the most significant scaling bottlenecks for the application as a whole. For

instance, a routine that displays abysmal scaling but consumes only a fraction of a percent

of the total execution time is less important than a routine that is only a factor of two from

ideal scaling but accounts for nearly 50% of the total execution time on large numbers of

processors. For developers to tune applications for scalable performance, effective tools

for pinpointing scalability bottlenecks and quantifying their importance are essential.

In our early efforts to understand the performance problemsof parallel codes, we used

HPCToolkit [136], an efficient performance analysis toolchain. HPCToolkit enables the

analysis of running program by performing sampling of various hardware counters. HPC-

Toolkit associates the performance data with application source code and presents to a user

via a graphical interface. HPCToolkit generates aflat performance profile; a user would

know how much time is spent in a certain procedure, such a communication routine, over
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main

setup

send wait

solve

send wait

Figure 11.1: Motivating example for parallel performance analysis usingcalling contexts:

users are interested in the performance of communication routines called in thesolver

routine.

the entire execution of a program. However, in our experience using HPCToolkit to profile

parallel codes, we discovered that such information is not sufficient. If the goal is mod-

ifying the application to improve the parallel performance, then it is extremely useful to

know thecalling contextof the communication routine, em on which call chain it occurred

and with what frequency. A motivating example is given in Figure 11.1: let’s consider a

parallel application in which themain routine invokes asetup routine, followed by the

actualsolver routine. Bothsetup andsolver routines invoke communication rou-

tines such assend andwait. A flat performance profile would tell us how much total

time is spent in the communication routines; however, a userwould be more interested in

how much time is spent in the communication routines called from the solver.

This chapter describes a new approach for identifying scalability bottlenecks in execu-

tions of SPMD parallel programs, quantifying their impact on performance, and associating

this information with the program source code. Our analysistechnique and our tools that

apply it are independent of the parallel programming model,underlying processor architec-

ture, communication interconnect, and application characteristics. Our approach involves
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three steps.

First, we collect call path profiles for two or more executions of unmodified, fully-

optimized application binaries on different numbers of processors. Call path profiles cap-

ture the costs of the various calling paths during the execution of a program. We represent

concisely a call path profile as a calling context tree (CCT) [19]. In a CCT, each node cor-

responds to a procedure, such that every path from the root toeach node reflects an actual

call path realized during the program execution. The nodes of the CCT are annotated with

the number of samples that were collected by the profiler in the procedure corresponding

to that node, which approximates the execution cost of the node.

Second, we use our expectations about how costs should differ among an ensemble

of executions to compute scalability at each point in a program’s execution. We assess

each component’s deviation from scalable performance by computing its cost in excess

of its expected value. We report this cost normalized as a fraction of overall program

execution time. To help developers understand how performance bottlenecks arise, we

attribute scalability metrics to each node in an execution’s calling context tree.

Third, with the aid of an interactive browser, an application developer can explore a

calling context tree top-down fashion, see the contexts in which poor scaling behavior

arises, see the source code lines that fail to deliver scalable performance, and understand

exactly how much each scalability bottleneck dilates execution time.

In this chapter we evaluate the applicability of call path based profiling for parallel

codes. We used a toolchain containingcsprof, andhpcviewer to evaluate the scala-

bility bottlenecks for a series of CAF applications such as the NAS benchmarks MG, CG,

SP, and the LBMHD kernel, for a UPC version of NAS CG, and for a MPI version of the

Parallel Ocean Program (POP), and for a MILC benchmark. In Appendix A, we present

scaling analysis results for MPI and CAF versions of NAS MG, CG, SP, BT and LU. We

determine which communication and synchronization primitives do not scale, and rely on

the call path information to determine which code fragmentsand programming idioms are

responsible for the non-scalable use of communication primitives.
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11.1 Call Path Profiling and Analysis

Thecsprof profiler [82, 83], developed as part of the HPCToolkit project [168] at Rice

University, profiles unmodified, fully-optimized executables without prior arrangement.

csprof uses event-based sampling in conjunction with a novel call stack unwinding tech-

nique to attribute execution costs to calling contexts and associate frequency counts with

call graph edges.

csprof stores sample counts and their associated calling contextsin acalling context

tree (CCT) [19]. In a CCT, the path from each node to the root of the tree represents a

distinct calling context. A calling context is representedby a list of instruction pointers,

one for each procedure frame active at the time the event occurred. Sample counts attached

to each node in the tree associate execution costs with the calling context in which they

were recorded.

After post-mortem processing,csprof’s CCTs contain three types of nodes: proce-

dure frames, call sites and simple statements. A procedure frame can have call sites and

simple statements as children. A call site can have one or more procedure frames as chil-

dren. Simple statements don’t have any children.

In this chapter, we usecsprof’s CCTs as the basis for analyzing an ensemble of

executions using performance expectations.csprof supports measurement of both syn-

chronous and asynchronous events. For each event,csprof records the calling context in

which the event occurred.csprof has low overhead (2-7%) and has one order of magni-

tude lower overhead than instrumentation based profilers such asgprof for call intensive

programs.

We co-designed an API for user defined synchronous metrics support incsprof. An

application can check if it is being run withcsprof by querying a functioncsprofIsActive.

If the result is true, then the application can register metrics for synchronous profiling.

Using the API, one first acquires a handle for a metric from from csprof, then specifies

a string name for the metric along with a sampling frequency.Finally, the application

can record metric events by calling acsprof API function. At that point,csprof will
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unwind the stack and record the calling context for the event.

Mellor-Crummey, Tallent and Zhao developed a source correlation mechanism for call

path profiles and an interactive viewer. The source correlation module takes as input the

performance data collected bycsprof, and converts it into an XML file containing the

calling context tree associated with the sample events. I extended the source correlation to

group call sites and line samples in the same function under the same procedure frame, and

extended the XML output format to represent the procedure frames. The interactive viewer,

hpcviewer, is a Java-based viewer of the XML file produced by the source correlation

phase; it displays a top-down view of the call tree, togetherwith the metrics collected

by csprof (cycles or user-defined metrics), and enables a user to navigate the call tree.

The metrics values for the tree nodes are inclusive: the metric value for call tree node

corresponding to functionfoo is the sum of the metrics for all the functions called directly

or indirectly byfoo and the metric values collected in the body offoo.

We extended a prototype ofhpcviewer for analysis of call path profiles with a

bottom-up view of the call tree. The bottom-up view sorts allprocedures by their inclusive

metric value. For a given procedure, the bottom-up view enables a user to navigate up the

call tree for that procedure and also attributes how much of the procedure’s cost comes

from different calling contexts. For example, a procedurefoo might be called byA, B,

andC, with 10% of the costs attributed to calls fromA, 20% to calls fromB, and 70% to

calls fromC. The bottom-up view displays this kind of information and enables a user to

navigate fromfoo to its calling contexts corresponding toA, B, andC.

11.2 Automatic Scalability Analysis

Users have specific expectations about how the performance of their code should differ

among an ensemble of executions. This is true for both serialand parallel executions.

Consider an ensemble of parallel executions. When different numbers of processors

are used to solve the same problem (strong scaling), we expect an execution’s speedup

with respect to a serial execution to be linearly proportional to the number of processors
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used. When different numbers of processors are used but the amount of computation per

processor is held constant (weak scaling), we expect the execution time for all executions

in an ensemble to be the same. Both types of scaling have relevant practical applications.

When time to solution is critical, such as when forecasting next week’s weather, then strong

scaling is preferred. When fine resolution modeling is necessary, then a common practice

is to choose a problem size that can be run on a single node, andthen increase the number

of processors while keeping the problem size on each node constant.

In each of these situations, we can put our expectations to work for analyzing appli-

cation performance. In particular, we use our expectationsabout how overall application

performance will scale under different conditions to analyze how well computation per-

formed in each calling context scales with respect to our expectations.

To apply our approach, we first usecsprof to profile a program under different condi-

tions (e.g., on a different number of processors or using different input sizes). Second, we

clearly define our expectations and compute how much performance deviates from our ex-

pectations in each calling context in an execution’s CCT recorded bycsprof. Finally, we

use an interactive viewer to explore the CCT whose nodes are annotated with the scalabil-

ity metrics that we compute. The interactive viewer enablesdevelopers to quickly identify

trouble spots.

While the principle of performance analysis using expectations applies broadly, in this

chapter we focus on using expectations to pinpoint scalability bottlenecks in an ensemble

of executions used to study strong scaling or weak scaling ofa parallel application.

11.2.1 Call Path Profiles of Parallel Experiments

We analyze strong or weak scaling for an ensemble of parallelexecutionsE = {E1, E2,

...,En}, whereEi represents an execution onpi processors,i = 1, n. Let Ti be the running

time of the experimentEi.

Our calling context trees contain three types of nodes:procedure frames, call sitesand

statements. A procedure frame node can have call sites and statements aschildren, and it
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corresponds to invoked procedures. A call site can have procedure frames as children, and

corresponds to source code locations where other procedures are invoked. Statement nodes

don’t have any children nodes, and they correspond to samples taken during computation

performed in the various procedures. The analysis we present relies on CCTs to have the

same structure in parallel executions on varying number of processors. For every nodem in

a CCT, letCpi
(m) be its cost onpi processors. In our analysis, we consider bothinclusive

andexclusivecosts. The inclusive cost atm represents the sum of all costs attributed tom

and any of its descendants in the CCT. Ifm is an interior node in the CCT, it represents an

invocation of a functionf . Its inclusive cost represents the cost of the call tof itself along

with the inclusive cost of any functions it calls. Ifm is a leaf in the CCT, it represents

a statement instance inside a call to some function. Ifm is a procedure frame forf , its

exclusive cost includes the cost incurred in statements inf , which are its children. Ifm is

a call site, or a statement, its exclusive cost represents the cost attributed tom alone. For a

leaf procedure the inclusive cost equals the exclusive cost. It is useful to perform scalability

analysis for both inclusive and exclusive costs; if the lossof scalability attributed to the

inclusive costs of a function invocation is roughly equal tothe loss of scalability due to

its exclusive costs, then we know that the computation in that function invocation doesn’t

scale. However, if the loss of scalability attributed to a function invocation’s inclusive costs

outweighs the loss of scalability accounted for by exclusive costs, we need to explore the

scalability of the function’s callees.

We introduce our scalability analysis by describing scalability metrics of increasing

complexity, considering the cases of strong scaling and weak scaling.

11.2.2 Simple Strong Scaling

Consider two strong scaling experiments running on1 andp processors, respectively. Let

m a node in the CCT. In the ideal case, we would expect thatCp(m) = 1
p
C1(m), or equiv-

alently thatpCp(m) = C1(m). Often, this will not be the case, and we can measure how

far we are from our expectation of ideal scaling by computingthe excess work amount for
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nodem in the p-processor execution aspCp(m) − C1(m). To normalize this value, we

divide the excess work by the total work performed in experimentEp, to obtain

SEW (m) =
pCp(m) − C1(m)

pTp

the fraction of the execution time that represents excess work attributed to nodem.

11.2.3 Relative Strong Scaling

Consider two strong scaling experiments executed onp and q processors, respectively,

p < q. The expected behavior in the case of ideal relative scalingwould beqCq(m) =

pCp(m). To capture the departure from the expectation, we compute the excess work in the

q-processor execution asqCq(m) − pCp(m). To normalize this previous value, as before,

we divide it by the total work performed in experimentEq, to obtain

REW (m) =
qCq(m) − pCp(m)

qTq

the fraction of the execution time that represents excess work attributed to nodem.

11.2.4 Average Strong Scaling

Consider an ensemble of strong scaling experimentsE1, ..., En. We define the fraction

of execution time that represents the average excess work attributed to CCT nodem as

follows:

AEW (m) =
Σn

i=2(piCpi
(m) − p1Cp1

(m))

Σn
i=2piTi

Notice that forAEW (m), the numerator computes excess work relative to the work

performed on the smallest number of processors. We use the cost onp1 processors rather

than the cost on one processor for the following reason: for large problems, it might not

be possible to solve the whole problem on a single processor.In this case, we evaluate

relative scaling with respect to the execution time on the smallest number of processors on

which the chosen problem size runs. The average excess work metrics are intuitive; perfect



172

scaling corresponds to a value of0, sublinear scaling yields positive values, and superlinear

scaling yields negative values.

When analyzing scaling, we have a choice between using average scalability over an

ensemble of experiments versus using relative scalabilitybetween the parallel runs on the

smallest and the largest number of processors. The advantage of the average scalability

metric is that it smoothes over the performance data noise between parallel runs on dif-

ferent number of processors. In contrast, using relative scaling with the largest number

of processors provides a quantitative explanation of all ofthe parallel overhead incurred.

Typically, both methods provide qualitatively similar results.

Note that the simple and relative excess work metrics described in the preceding sec-

tions are simply special cases of the more general average excess work metric that we

describe here.

11.2.5 Weak Scaling for a Pair of Experiments

Consider two weak scaling experiments executed onp andq processors, respectively,p <

q. The expectation is thatCq(m) = Cp(m), and the deviation from the expectation is

Cq(m) − Cp(m). We normalize this value by dividing it by the total work performed

in experimentEq, and define the fraction of the execution time representing excess work

attributed to nodem as follows

REW (m) =
Cq(m) − Cp(m)

Tq

11.2.6 Weak Scaling for an Ensemble of Experiments

Consider an ensemble of weak scaling experimentsE1, ..., En. We define the fraction

of execution time that represents the average excess work attributed to CCT nodem as

follows:

AEW (m) =
Σn

i=2(Cpi
(m) − Cp1

(m))

Σn
i=2Ti



173

The same argument for relative strong scaling vs average strong scaling apply when

choosing between weak scaling between a pair of experimentsvs weak scaling for an en-

semble of experiments.

11.2.7 Analysis Using Excess Work

The excess work metrics that we described can be computed forboth inclusive and exclu-

sive execution costs. We defineIAEW (m) as theinclusive average excess workat node

m; this represents the fraction of execution time corresponding to inclusive excess work

attributed to CCT nodem. We defineEAEW (m) as theexclusive average excess work

at nodem; this represents the fraction of execution time corresponding to exclusive excess

work attributed to CCT nodem. Similarly, we defineIREW (m) as theinclusive relative

excess workat the nodem andEREW (m) as theexclusive relative excess workat node

m.

IREW (m) andEREW (m) serve as complementary measures of scalability of CCT

nodem. By using both metrics, one can determine whether the application scales well or

not at nodem, and also pinpoint the cause of any lack of scaling. If a function invocationm

has comparable positive values forIREW (m) andEREW (m), then the loss of scalability

attributed to the inclusive costs ofm is roughly equal to the loss of scalability due to its

exclusive costs and we know that the cost ofm doesn’t scale. However, if the loss of

scalability attributed tom’s inclusive costs outweighs the loss of scalability accounted for

by its exclusive costs, we need to explore the scalability ofm’s callees. To isolate code that

is an impediment to scalable performance, one simply navigates down CCT edges from

the root of the tree to trace down the root cause of positiveIREW values. A strength of

this approach is that it enables one to pinpoint impedimentsto scalability, whatever their

underlying cause (e.g., replicated work, communication, etc.). We can perform a similar

analysis using theIAEW (m) andEAEW (m) metrics.
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11.2.8 Automating Scalability Analysis

We prototyped tools to support automatic scalability analysis by building upon compo-

nents of Rice University’s HPCToolkit performance analysis tools [82,136,168]csprof,

xcsprof, andhpcviewer. csprof was designed as a profiler for node programs; for

parallel programs, we usecsprof to collect a node profile for each process in a parallel

execution.xcsprof is used to post-process a raw call path profile collected bycsprof,

correlate it with the application’s source code, and produce an XML representation of a

calling context tree annotated with performance metrics.hpcviewer is Java-based user

interface that provides users with a top-down interactive and navigable view of a calling

context tree, along with associated performance metrics and program source code.

In Figure 11.2, we present the process by which theIAEW andEAEW metrics are

computed: call path profiles are collected for each process of a parallel execution using

csprof on p1, p2, ...,pn processors. The resulting profile data is then correlated with the

source code and converted to XML format usingxcsprof. Next, we collate the XML

data from all experiments and compute theIAEW andEAEW scalability scores. Finally,

a performance analyst can usehpcviewer to interactively explore a calling context tree

annotated with both measured execution costs and the scalability metrics we compute. The

IREW (m) andEREW (m) metrics are computed using a similar process.

11.3 Experimental Methodology

For the analysis performed in this chapter, we used two typesof metrics. One was the

sampling-based number of cycles metric. The other consisted of user defined metrics; we

instrumentedcafc’s runtime usingcsprof’s API for monitoring synchronous events to

register and then record the following metrics:

• number and volume ofPUTs

• number and volume ofGETs
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(a) Process for performing scalability analysis using callpath profiles.

(b) Process for visualizing call path based scalability analysis.

Figure 11.2: Processes for computing and displaying the call path-based scalability infor-

mation.
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• number of notify and waits

• number of barriers

We analyzed the parallel scalability for MPI and CAF versions of several benchmarks

using two analysis techniques. The first type of analysis wassemi-automatic and focused

on understanding the impact of scalability of particular communication primitives on strong

scaling. We determined the total time spent in each communication primitive of interest,

then plotted the relative cost of communication and computation time as a function of

the number of processors. The computation cost was computedas the difference between

the total execution time and the total communication time. If the time spent in a partic-

ular communication primitives does not decrease proportional to the increase in number

of processors, the performance of primitive is non-scalable. We leveragedhpcviewer’s

bottom-up view to determine which call site or programming idiom was responsible. We

were inspired by Bridgeset al [39] to use stacked charts of relative costs to evaluate scala-

bility of communication primitives and communication. Communication primitives whose

relative cost increases with a growing number of processorspoint to scaling problems. Note

that if computation scales ideally, then the relative cost of communication indicated by the

layered charts would coincide with the excess work for each parallel experiment. However,

in practice, for strong scaling applications the computation cost does not scale linearly with

the number of processors, so the total cost of communicationas indicated by the layered

charts is usually an underestimation of the excess work.

The second type of analysis was the automatic expectations-based scaling analysis,

which computed the excess work metrics for all nodes in the calling context tree of an

application. Usinghpcviewer we determined which functions were responsible for the

lack of scalability, and whether any non-scalability was due to communication or compu-

tation.

Typically, parallel scientific codes include a initialization phase, a timed phase for

which results are reported and which is the target of optimization, and a reporting and

clean-up phase. It is important to note that our scaling analysis methods operate on the
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complete application execution, and we report lack of scalability that could be part of any

phase. Our scaling results cannot always be used for a straightforward quantitative perfor-

mance comparison of different versions of the same algorithm, e.g. an MPI version vs a

CAF version, but could be used to provide insight into scaling problems of each application

under consideration.

The CAF codes we study were compiled and run withcafc using the ARMCI library.

For the MPI codes we study, we analyze the cost of computationand that of the MPI

primitives. For the CAF experiments, we focus on the cost of ARMCI primitives. We

are also interested in determining the overhead incurred byusingcsprof to profile the

parallel codes.

The experiments presented in this section were performed ona cluster of 92 HP zx6000

workstations interconnected with Myrinet 2000. Each workstation node contains two 900

MHz Intel Itanium 2 processors with 32KB/256KB/1.5MB of L1/L2/L3 cache, 4-8GB of

RAM, and the HP zx1 chipset. Each node is running the Linux operating system (kernel

version 2.4.18-e plus patches). We used the Intel compilersV9.0 as our back-end compiler.

We used one CPU per node for our experiments.

For all the benchmarks analyzed we focused on small problem sizes, which tend to ex-

pose lack of scalability due to communication and synchronization inefficiencies on small

number of processors. In the remaining of this chapter we present experimental results for

which we gain insight using our scaling analysis. A comprehensive description of the rest

of our scaling analysis experiments is given in Appendix A.

11.4 Experimental Results

11.4.1 Analysis of LANL’s POP Application

An attractive scaling analysis target is represented by thevast amount of MPI applications.

We analyzed the version 2.0.1 of the Parallel Ocean Program (POP) [124,125], which uses

MPI to communicate data. POP is an ocean circulation model inwhich depth is used as the
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Figure 11.3: Screenshot of strong scaling analysis resultsfor POP, using relative excess

work, on 4 and 64 CPUs.

vertical coordinate. The model solves the three-dimensional primitive equations for fluid

motions on the sphere under hydrostatic and Boussinesq approximations. Spatial deriva-

tives are computed using finite-difference discretizations which are formulated to handle

any generalized orthogonal grid on a sphere, including dipole and tripole grids which shift

the North Pole singularity into land masses to avoid time step constraints due to grid con-

vergence.

We analyzed POP for a “large” test domain, with 384x288 domain size, 32 vertical

levels, and 2 tracers. We present scaling analysis results using relative excess work on

4 and 64 CPUs in Figures 11.3 and 11.4; we present the scaling analysis results using
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Figure 11.4: Screenshot of strong scaling analysis resultsfor POP, for the baroclinic

module, using relative excess work, on 4 and 64 CPUs.

average excess work for an ensemble of executions on 4, 8, 16,24, 32, 36, 40 , 48, and

64 CPUs in Figures 11.5 and 11.6. The results obtained with the relative excess work are

qualitatively similar to those obtained using the average excess work; however, the relative

excess work obtained using the minimum and maximum number ofCPUs emphasizes the

program behavior on the largest number of CPUs.
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Figure 11.5: Screenshot of strong scaling analysis resultsfor POP, using average excess

work, for an ensemble of executions on 4, 8, 16, 24, 32, 36, 40,48, and 64 CPUs.

The relative excess work results for 4 and 64 CPUs show that the the main program

loses71% efficiency, with53% due to the time step routine, and21% due to the initial-

ization routine. The time step costs are further discriminated as33% due to the baroclinic

module,8% due to the barotropic module, and other functions with smaller costs. Within

the baroclinic driver, the routinediagnostics mp cfl check is responsible for25%

loss of scalability; we show the scaling analysis for this routine in Figure 11.4.

The average excess work results on 4, 8, 16, 24, 32, 36, 40 , 48,and 64 CPUs showed

that the main program displays48% loss of scaling, out of which36% are due to the time

step routine, and the remaining12% are due to initialization routine. The time step costs
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Figure 11.6: Screenshot of strong scaling analysis resultsfor POP, for the baroclinic

module, using average excess work, for an ensemble of executions on 4, 8, 16, 24, 32, 36,

40, 48, and 64 CPUs.

are split between the baroclinic module, with21%, the barotropic module, with6%, and

other functions with smaller costs. Within the baroclinic driver, we observed an18% loss

of scalability due the routinediagnostics mp cfl check; we present the scaling

analysis results for this routine in Figure 11.6.
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For both sets of results, we can notice that lack of scaling isdue to multiple calls to

the routineglobal reduction maxval scalar dbi. By using source code corre-

lation, we discovered that for each of the vertical levels, POP performs multiple scalar

reductions. This deficiency can be addressed by aggregatingthe reductions, and we found

the interactive viewer of the annotated call tree to be extremely effective in pinpointing this

scaling bottleneck quickly.

11.4.2 Analysis of the NAS MG Benchmark

The MG multigrid kernel calculates an approximate solutionto the discrete Poisson prob-

lem using four iterations of the V-cycle multigrid algorithm on an× n× n grid with peri-

odic boundary conditions [24]. The CAF version of NAS MG is described elsewhere [73].

In Figure 11.7 we present the scalability of relative cost ofcommunication primitives and

computation for the CAF version of NAS MG; the overall excesswork indicated by the

layered chart is82%. In Figure 11.8 we present a summary of the user-defined metrics for

the volume of communication and synchronization. The profiling overhead was of 4-7%

for the CAF MG experiments.

By analyzing the scalability of communication primitives and computation for CAF

NAS MG, we determined that the relative cost of theARMCI Get andARMCI Barrier

primitives increases as the number of processors increases. By using the bottom-up view,

we determined that both primitives are used in inefficient user-written implementation of

reductions such as sum and maximum. Original CAF source-level implementations of

collective operations, which we received from Robert Numrich, were developed on Cray

systems and used barriers. For example, a sum reduction for double precision vectors was

implemented as follows. Letm = ⌈log(num images())⌉. Next, a barrier is performed,

after which each of the process imagesi, with i = 1, m computes the partial sum reduction

by getting and adding the corresponding vector of elements from process imagesi, i + m,

i + 2m, .... A barrier is called again, after which process imagei, with i = 1, m, gets the

partial sums from process images1, 2, ..., i − 1, i + 1, ...., m. A barrier is called again,
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Figure 11.7: Scalability of relative costs for communication primitives and computation

for the CAF version of the NAS MG benchmark class A (size2563).

CPUs PUTs PUT vol GETs GET vol notifies waits barriers

1 0 0 93 1064 0 0 292

2 714 51031104 95 1084 1428 1428 292

4 714 32018592 95 1084 1428 1428 292

8 714 19297376 95 1084 1428 1428 292

16 724 12939008 95 1084 1438 1438 292

32 734 8152464 95 1084 1448 1448 292

64 744 4938104 95 1084 1458 1458 292

Figure 11.8: Communication and synchronization volume forthe CAF version of NAS

MG, class A (size2563).

after which the remaining process images read the overall sum from one of the firstm

process images, such that process imagej reads the sum from process image1+mod(j, m),

for j = m + 1,num images(). These reductions implementations do not yield portable

performance, since they are not efficient on clusters.

Even though for MG these reductions occur in the initialization phase, which is not
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measured and reported in the timed phase of the benchmark, itpoints to a problem: the lack

of collective communication at the language level leads users to write an implementation

of these primitives that does not deliver portable high-performance.

By inspecting the communication and synchronization volume results presented in Fig-

ure 11.8, we noticed that the number of barriers is constant from 2 to 64 processors. How-

ever, since the computation volume decreases, it means thatthe relative importance of

barriers (and reductions using them) increases. It is therefore crucial to have good support

for collective operations.

Figures 11.9 and 11.10 show screenshots with results of strong scaling analysis using

relative excess work for the CAF version of NAS MG, on 1 and 64 processors. The results

in Figure 11.9 show that theIREW for the main routinerice mg caf is 82%, out of

which44% is due to calls tozran3, 16% to the central timed routine,mg3p, 12% is due to

a call tocafinit , 9% to calls toresid, 4% to a call tomg3p in the initialization phase,

3% to the routinecafglobalstartupinit , 3% to a call tocaf all max dp, 2%

to calls tonorm2u3, and1% to a call tocaf bcast i in the initialization phase. For

cafinit, which is called when launching CAF programs,10% of IREW is due to a

call to MPI Init and 2% to a call toARMCI Init; these routines initialize the MPI

and the ARMCI libraries, respectively. In Figure 11.10 we analyze top-down the routine

zran3. By explaining why44% of IREW is attributed tozran3, which randomly ini-

tializes the work array with a combination of zero and one values, we find that the loss

of scalability is due to calls tocaf allmax i psbody, caf allmax dp psbody,

caf allmin dp psbody, which are suboptimal implementations of minimum and max-

imum element reductions for integer and for double precision arrays. Within the implemen-

tation of these reductions, we find that the largest excess work amount is due to the use of

ARMCI Barrier. The routinezran3 is called only in the initialization part of the bench-

mark and is not part of the benchmark’s timed result; however, poor scaling for this routine

hurts the scalability of the NAS MG program and consequentlyyields an inefficient use of

the target parallel system.
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Figure 11.9: Screenshot of strong scaling analysis resultsfor CAF MG class A (size2563),

using relative excess work on 1 and 64 processors.

By using the top-down analysis with scalability information attributed to the calltree

nodes, we obtained information similar to what we obtained using the communication

primitives plots and the bottom-up view. Our scaling analysis based on expectations is

also more detailed, since it can display calling contexts and it can also show line level

detail.

In Appendix B, we present a proposed extension of CAF with collective operations
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Figure 11.10: Screenshot of strong scaling analysis results for CAF MG class A (size

2563), using relative excess work on 2 and 64 processors, for the routinezran3.

at language level and an MPI implementation strategy. For CAF MG we were able to

reduce the initialization time by 40% on 64 CPUs by using our collective operations CAF

extensions.
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Figure 11.11: Scalability of relative costs for communication primitives and computation

for the CAF version of the NAS SP benchmark class A (size643).

11.4.3 Analysis of the NAS SP Benchmark

NAS SP is a simulated CFD application that solves systems of equations resulting from

an approximately factored implicit finite difference discretization of three-dimensional

Navier-Stokes equations [24]. SP solves scalar penta-diagonal systems resulting from full

diagonalization of the approximately factored scheme [24]. The CAF version of SP was

described in Section 6.3. In Figure 11.11 we present the scalability of relative costs for

communication primitives and computation for the CAF version of NAS SP; the excess

work indicated by the layered chart is51% on 64 CPUs. The profiling overhead was 1-8%

for CAF NAS SP.

The results in Figure 11.11 show that as the number of processors grows, the cost of

sync notify becomes significant. Using the bottom-up view ofhpcviewer we deter-

mined that 27% of thesync notify cost on 64 CPUs is due to the calls in the routine

copy faces. The cause for this cost is the implementation of thesync notify seman-

tics: a notify to an image Q from P is received by Q only after all communication initiated

by P to Q has completed. In practice, this means that before issuing the notify, image P

polls until all PUTs from P to Q have completed, thus exposing the latency of commu-
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CPUs PUTs PUT vol GETs GET vol notifies waits barriers

1 0 0 8 188 4423 2412 25

4 4818 493548288 5 104 9643 9642 27

9 7224 440017888 5 104 14455 14454 27

16 9630 372426064 5 104 19267 19266 27

25 12036 321252016 5 104 24079 24078 27

36 14442 280289968 5 104 28891 28890 27

49 15120 216247680 51 212 30252 30246 17

64 19254 218391120 5 104 38515 38514 27

Figure 11.12: Communication and synchronization volume for the CAF version of NAS

SP, class A (size643).

nicating the data. A solution to this problem would be to havesupport for non-blocking

synchronization while maintaining the same semantics, e.g. after issuing async notify

the sender process images continues execution; however, the destination image would still

receive the notify after the completion of communication issued by the sender process.

Currently such support is missing from both ARMCI and GASNetlibraries. 47% of the

sync notify cost on 64 CPUs is due to the “handshakes” necessary for communica-

tion in the sweep routines,x solve, y solve andz solve. Notice that the number

of sync notifys andsync waits is slightly more than double the number ofPUTs.

This is due to the fact that the CAF version was adapted from the MPI version, and we

used a basic pattern of conversion from 2-sided communication in the MPI version to the

one-sided programming model of CAF. An MPI send/receive communication pair such as

that presented in Figure 11.13(a) is replaced with the code shown in Figure 11.13(b).

In Figure 11.12, we present a summary of the user-defined metrics for the volume of

communication and synchronization. The communication volume summary results show

that the number ofPUTs increases asP
3

2 , whereP is the number of processors. This is due

to the multipartitioning distribution. The number of handshakes increases with the number
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P:
call MPI_send

Q:
call MPI_recv

P:
call sync_wait(Q)
... put to Q ...
call sync_notify(Q)

Q:

call sync_notify(P)
call sync_wait(P)
... consume the data Q ...

a) Two-sided communication b) One-sided communication

Figure 11.13: Basic pattern of conversion from two-sided message passing communication

in MPI into one-sided communication in CAF.

of processors by the same function, with a multiplicative factor of two. The majority of the

notifies’ cost is due to the blocking implementation of notifies used to signal the completion

of thePUTs from P to Q.

A previous study [57] identified the conversion of MPI 2 sidedcommunication into

one-sided communication as a problem, and suggested the useof multiversion buffers as

a solution for the exposed latency while waiting for the remote buffer to become available

for remote write. For NAS SP, during the forward substitution phase, the waiting for the

buffer on Q to become available for writing represents only 3% of the forward substitution

time. For the backward sweep, the waiting for the remote buffer to become available takes

up to 17% of the backward sweep time. This suggests that usingmultiversion buffers might

benefit more the backward substitution phase.

Figures 11.14 and 11.15 show screenshots of the strong scaling analysis results for

the CAF version of NAS SP on 4 and 64 CPUs. The results in Figure11.14 show that

the value ofIREW for the main routinempsp is 53%; this is slightly higer than the

excess work of51% indicated by the layered chart in Figure 11.11, due to poor scaling of

local computation. The non-scalability is explained by theadi routine, which performs

alternate direction integration, with a metric of51%. In Figure 11.15, we analyze the

scalability ofcopy faces, which exchanges overlap values between cells.copy faces

has aIREW score of16% and anEREW score of4%; this means that the computation
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Figure 11.14: Screenshot of strong scaling analysis results for the CAF version of NAS

SP class A (size643), using relative excess work on 4 and 64 CPUs.

in copy faces is also responsible for scalability loss. By investigatingthe call sites

in copy faces, we notice that a call tonotify has anIREW scores of9%. This is

consistent with the communication primitives scalabilityresults, which pointed tonotify

as a major non-scalable part of the communication costs.

11.4.4 Analysis of the NAS CG Benchmark

To evaluate the applicability of the expectations-based scaling analysis to UPC codes, we

analyzed the UPC version of NAS CG. The CG benchmark uses a conjugate gradient

method to compute an approximation to the smallest eigenvalue of a large, sparse, symmet-

ric positive definite matrix [24]. This kernel is typical of unstructured grid computations

in that it tests irregular long distance communication and employs sparse matrix vector

multiplication. The UPC version of NAS CG was described in Section 7.4.

In Figure 11.16, we present a screenshot of the scaling analysis results of UPC NAS
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Figure 11.15: Screenshot of strong scaling analysis results for the CAF version of NAS

SP class A (size643), using relative excess work on 4 and 64 CPUs, for the routine

copy faces.

CG, using relative excess work on 1 and 16 CPUs. The main program loses44% effi-

ciency, out of which theconj grad routine, which performs conjugate gradient compu-

tation, accounts for37% loss of scalability. By further analyzing the calling context tree,

we determined that two calls toreduce sum costed15% and5%, respectively, and that

a call toupcr wait accounted for6% loss. The source code correlation showed that

reduce sum has a suboptimal implementation, using barriers; a solution would be to

employ one of the UPC collective operations.

11.4.5 Analysis of the LBMHD Benchmark

We described the MPI implementation of LBMHD in Section 3.2.2 and described our CAF

implementation decisions in Section 8.2. In Figure 11.17 wepresent the scaling of relative

cost for communication primitives and for computation scalability for the CAF version of
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Figure 11.16: Screenshot of strong scaling analysis for UPCNAS CG class A (size14000),

using relative excess work on 1 and 16 CPUs.

LBMHD. The overall loss of efficiency on 64 CPUs indicated by the layered chart is of

39%. In Figure 11.19 we present a summary of the user-defined metrics for the volume

of communication and synchronization. The profiling overhead was of 7-16% for CAF

LBMHD.
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Figure 11.17: Scalability of relative costs for communication primitives and computation

for the CAF version of the LBMHD kernel, size10242.

The relative costs scalability graph show that the cost of barriers for the CAF version

increases with the number of CPUs. Figure 11.19 shows that asthe number of CPUs in-

creases, the volume ofPUTs per process image decreases, but the number and volume of

GETs and the number of barriers stay constant. BothGETs and barriers were used to imple-

ment reductions at the source level in the original LBMHD source code that we received

from LBNL. The CAF implementation was performing three consecutive reductions on

scalars. We first replaced the three scalar reductions with avector reduction defined at lan-

guage level as described in Section 11.4.2; that solution was suboptimal since the vector

reduction used multiple barriers. By replacing the three scalar reductions with a three-

element MPI vector reduction, performance improved by 25% on 64 processors, as shown

in Figure 11.18, that presents parallel efficiency for the timed phases of MPI and CAF

versions of the LBMHD benchmark. As we mentioned in Section 11.3, the excess work

indicated by the layered charts and computed by the automated scaling analysis applies to

the entire application, not just the timed phase of it. This results points that it is important to

use the appropriate collective primitives, but also to the need for efficient reduction support

at the language level.
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Figure 11.18: Parallel efficiency for the timed phases of MPIand CAF variants of the

LBMHD kernel on an Itanium2+Myrinet 2000 cluster.

In Figures 11.20 and 11.21, we present screenshots with results of strong scaling anal-

ysis for CAF LBMHD, using relative excess work, on 4 and 64 CPUs. The results in

Figure 11.20 show that theIREW score for the main routinemhd is 53%. The rou-

tine decomp, which performs the initial problem decomposition, has both IREW and

EREW scores of14%, which means that the lack of scalability is due to local computa-

tion. cafinit has aIREW score of10%, caused byMPI Init andARMCI Init. The

routinestream has anIREW score of9%. The routinecaf allsum dp hasIREW

scores of6%, 6%, and5%. This points to the inefficiency of user handcoded reductions,

similar to the lesson learned from the bottom-up semiautomatic analysis. In Figure 11.21,

we present the analysis results for the routinestream. The main routine contributing

to the non-scalability score ofstream is neighbors, which updates the ghost cells of

the neighbors;neighbors has a value of7% for IREW and1% for EREW . Within

neighbors, one calls tonotify has anIREW score of1% and three calls tonotify

have a score of1% each. Note that the overall excess work of53% is significantly higher
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CPUs PUTs PUT vol GETs GET vol notifies waits barriers

4 200 22195200 33 264 200 200 107

9 200 14808000 33 264 404 404 107

16 200 11136000 33 264 404 404 107

25 200 8889600 33 264 404 404 107

36 200 7420800 33 264 404 404 107

49 200 6384000 33 264 404 404 107

64 200 5606400 33 264 404 404 107

Figure 11.19: Communication and synchronization volume for the CAF version of

LBMHD (size10242).

than the excess work of39% indicated by the layered chart in Figure 11.17; this is due to

poor scaling of local computation, such as the one performedby the routinedecomp. In

Appendix B we present a proposed extension of CAF with collective operations primitives

at language level and an MPI-based implementation strategy. By using the CAF exten-

sions, we were able to achieve an improvement of LBMHD of 25% on 64 processors, and

the translation to MPI collectives didn’t introduce significant overhead.

11.4.6 Analysis of a MILC Application

MILC [25] represents a set of parallel codes developed for the study of lattice quantum

chromodynamics (QCD), the theory of the strong interactions of subatomic physics. These

codes were designed to run on MIMD parallel machines. They are written in C, and they are

based on MPI. MILC is part of a set of codes used by NSF as procurement benchmarks for

petascale systems [152, 153]. The latest version of MILC, 7 as of the time of this writing,

uses the SciDAC libraries [4] to optimize the communicationin the MILC application. We

present an analysis of the version 7.2.1 of MILC using MPI as communication substrate.

Our goal is to demonstrate the applicability of our method toMPI-based codes that are used

with weak scaling.
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Figure 11.20: Screenshot of strong scaling analysis results for CAF LBMHD (size10242),

using relative excess work, on 4 and 64 CPUs.

From the MILC codes we analyzed the su3rmd application, which is a Kogut-Susskind

molecular dynamics code using the R algorithm. We chose our input sizes so that as we

increased the number of processors, the work on each processor remains constant. The
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Figure 11.21: Screenshot of strong scaling analysis results for CAF LBMHD (size10242),

using relative excess work, on 4 and 64 CPUs, for the routinestream.

expectation is that the overall running time is the same on any number of processors. In

Figure 11.22, we present a screenshot of the weak scaling analysis results for su3rmd

using relative excess work on 1 and 16 CPUs. Overall, su3rmd loses32% efficiency. A

call toks congrad two src is responsible for10% IREW , a call toupdate h leads

to 7% loss of efficiency, and two calls togrsource imp cause7% IREW each.

Next, we focus on the loss of scalability withinks congrad two src in Figure 11.23.

A call to ks congrad accounts for8% IREW , while a second call toks congrad

leads to2% IREW . Within the first call toks congrad, the routineload fatlinks
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Figure 11.22: Screenshot of weak scaling analysis results for su3rmd using relative excess

work on 1 and 16 processors.

has anIREW of 7%. Within both calls toks congrad, several calls to the routine

dslash fn field special have a cumulatedIREW of 4%.

In Figure 11.24, we present a screenshot of weak scaling results for grsource imp.

The results show that the routineload fatlinks loses again7% IREW . Overall,

load fatlinks is responsible for21% of the loss of scaling. We present a screenshot

of scaling analysis results forload fatlinks in Figure 11.25. Thepath product

routine accounts for4% IREW out of 7% IREW for load fatlinks. Inside the

routinepath product, several calls towait gather account for3% IREW . By

correlating the CCT node with the source code, we determinedthatwait gather waits
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Figure 11.23: Screenshot of weak scaling analysis results for su3rmd using relative excess

work on 1 and 16 processors, for the routineks congrad two src.

for a series of MPI sends and receives to complete.path product also exhibits a1%

EREW , showing that the time spent insidepath product increases as the number of

processors increases.

In Figure 11.26, we focus on the cost of the routinesdslash fn field special

called inks congrad. The results showed that againwait gather is a culprit.

Overall, we demonstrated that our scaling analysis technique can be applied as well

to the analysis of weak scaling parallel codes, and it pointed to a communication routine,
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Figure 11.24: Screenshot of weak scaling analysis results for su3rmd using relative excess

work on 1 and 16 processors, for the routinegrsource imp.

wait gather, as a significant source of inefficiency.

11.5 Discussion

Performance analysis based on expectations is a powerful technique. It is applicable to a

broad range of applications because it is not limited to any particular programming model.

By using a metric based on the fraction of excess work presentin an execution, we focus

attention on what matters; absolute scalability is less relevant than the overall cost incurred

in an execution due to lack of scalability.

In this chapter we presented novel parallel scalability analysis method based on call path

profiles, which automatically computes scalability scoresfor each node in a program’s call-

ing context tree. We focused on using the expectation of linear scaling to analyze parallel

executions that represent studies of strong scaling, and used expectations of constant time

for a weak scaling study. We also described a semiautomatic performance analysis of scal-

ability for computation and synchronization primitives for MPI and CAF benchmarks. We

presented the insight gained with our analysis methods intothe scalability problems of the

NAS benchmarks (MG, SP, and CG), the LBMHD benchmark, LANL’sPOP application,
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Figure 11.25: Screenshot of weak scaling analysis results for su3rmd using relative excess

work on 1 and 16 processors, for the routineload fatlinks.

and of an MPI-based MILC benchmark. We determined that the lack of reductions support

in the CAF language led to suboptimal and non-performance portable implementations of

reductions as CAF source-level libraries; replacing naivereductions with MPI reductions

yielded time improvements as high as 25% on 64 processors forthe LBMHD benchmark.
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Figure 11.26: Screenshot of weak scaling analysis results for su3rmd using relative excess

work on 1 and 16 processors, for the routineks congrad.
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We also determined that the the lack of a non-blocking implementation ofarmci notify

in the ARMCI communication library caused a scalability bottleneck in NAS SP.

This study showed that the results obtained by the automaticscaling analysis method

are consistent with those obtained by the semi-automatic method using the communication

primitives scalability plots and the bottom-up view. This means that even though one may

use many metrics to quantify scalability, the ones we utilized sufficed for both strong and

weak scaling analyses.

We explored an extension of the CAF model with collective operations, and evaluated

their impact; using the language-level collective led to a reduction of 60% on 64 CPUs of

the initialization time for the NAS MG benchmark and to gainsof 25% in execution time

on 64 CPUs for the LBMHD kernel. The language extensions are described in Appendix B.

We demonstrated the utility of our technique for pinpointing scalability bottlenecks no

matter what their underlying cause. Our scaling analysis method works regardless of the

SPMD parallel programming model, of the underlying communication fabric and proces-

sor type, of the application characteristics, and of the scaling characteristics (e.g. weak

scaling vs strong scaling). When used in conjunction with performance analysis based on

expectations, our performance tools are able to attribute scalability bottlenecks to calling

contexts, which enables them to be precisely diagnosed.

In the future, we intend to explore using performance analysis based on expectations

for analyzing codes written using other parallel programming models,e.g. OpenMP and

MPI-2. We plan to use our method to perform a thorough scalingstudy of petascale NSF

procurement benchmarks. Finally, we plan to incorporate support for performance analysis

using expectations into the distributed version of Rice University’s HPCToolkit perfor-

mance analysis tools.
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Chapter 12

Conclusions

We are fast approaching the point when petascale machines will be available to scientists

and engineers. Exploiting these machines effectively willbe a challenge. To rise to this

challenge, we need programming models and tools that improve development time produc-

tivity and enable us to harness the power of massively parallel systems. Because program-

mers rarely achieve the expected performance or scaling from their codes, they need tools

that can automatically pinpoint scaling impediments to direct and prioritize their optimiza-

tion efforts, and thereby improve development time productivity.

In the quest for easy to use, performance portable, and expressive parallel program-

ming models, Co-array Fortran represents a pragmatic alternative to established models

such as MPI, OpenMP and HPF. While MPI, a library-based message passing program-

ming model, is thede factotechnology used for writing parallel codes, it is difficult to

use. HPF and OpenMP are language-based programming models;they rely exclusively on

compilers to achieve high-performance, and are not able to deliver performance on a broad

range of codes and architectures. CAF offers a one-sided programming model, where only

one process needs to specifyPUT or GET communication, without interrupting the other

process; CAF is easier to use than MPI, especially for irregular applications. In contrast

to HPF and OpenMP, a CAF programmer has more control over the final performance and

only modest compiler technology is needed to achieve high-performance and scalability.

The thesis of our work is thatCo-array Fortran codes can deliver high performance and

scalability comparable to that of hand-tuned MPI codes across a broad range of architec-

tures. When CAF codes or other SPMD programs do not achieve the desired performance

and scalability, we can automatically diagnose impediments to their scalability.
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To demonstrate this thesis, we implementedcafc, a prototype multi-platform source-

to-source CAF compiler. We demonstrated through experiments on several platforms that

CAF versions of such regular codes as the NAS benchmarks SP, BT, and LU, of irregular

codes such as NAS CG, and of the magnetohydrodynamics code LBMHD can yield per-

formance comparable to or better than that of their MPI counterparts on both cluster-based

and hardware shared memory platforms.

This dissertation presents key implementation decisions regarding the implementation

of a multiplatform CAF compiler, and describes automatic and source level optimizations

for achieving local and communication performance on clusters and distributed shared

memory systems.

To achieveefficient node performance, thecafc-generated code must be amenable

to backend compiler analysis and optimization. To avoid thepenalty of overly conserva-

tive assumptions about aliasing,cafc implements an automatic transformation that we

call procedure splitting, that conveys to a backend compiler the lack of aliasing, co-array

shape and bounds, and the contiguity of co-array data. This enables a backend compiler

to perform more accurate dependence analysis and apply important optimizations such as

software pipelining, software prefetching and tiling. Ourexperiments showed that proce-

dure splitting yielded benefits as high as 60% on Itanium2 andAlpha architectures.

To achieve scalablecommunication performance, we used source-level transformations

such ascommunication vectorization. An advantage of CAF is that it can express vectoriza-

tion at source level without calls to bulk library primitives. Communication vectorization

yielded benefits as high as 30% on Myrinet cluster architectures. When writing CAF com-

munication, the Fortran 95 array sections enable a programmer to express communication

of strided data that is noncontiguous. We showed that even when using communication

libraries that support efficient non-contiguous strided communication, it is beneficial to

performcommunication packingof strided data at source level, sending it as contiguous

message, and unpacking it at its destination. We also showedthat one-sided communication

aggregation using active messages is less efficient than library optimized strided communi-
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cation transfers, because libraries such as ARMCI can overlap packing of communication

chunks at the source, communication of strided chunks and unpacking of chunks on the

destination. Communication packing at source level boosted performance about30% for

both CAF and UPC on clusters, but yielded minuscule benefits on shared memory plat-

forms. To give a CAF programmer the ability to overlap computation and communication,

we extended CAF withnon-blocking communication regions. Skilled CAF programmers

can use pragmas to specify the beginning and the end of regions in which all communi-

cation events are issued by using non-blocking communication primitives, assuming the

underlying communication library provides them. Using these regions enabled us to im-

prove the performance of NAS BT by up to 7% on an Itanium+Myrinet2000 cluster.

To further improve parallel performance of CAF or other SPMDcodes, we need to

determine the impediments to scalability. To understand how scaling bottlenecks arise,

we need to analyze them within the calling context in which they occur. This enables

program analysis at multiple levels of abstraction: we could choose to analyze the cost of

user-level routines, user-level communication abstractions, compiler runtime primitives, or

underlying communication library.

Users have certainperformance expectationsof their codes. For strong scaling paral-

lel applications users expect that their execution time decreases linearly with the number

of processors. For weak scaling applications, they expect that the execution time stays

constant while the number of processors increases and the problem size per processor re-

mains constant. Our goal was to develop an efficient technology thatquantifieshow much

a certain code deviates from the performance expectations of the users, and then quickly

guidesthem to the scaling bottlenecks. We developed an intuitive metric for analyzing the

scalability of application performance based on excess work. We used this scaling anal-

ysis methodology to analyze the parallel performance of MPI, CAF, and UPC codes. A

major advantage of our scalability analysis method is that it is effective regardless of the

SPMD programming model, underlying communication library, processor type, applica-

tion characteristics, or partitioning model. We plan to incorporate our scaling analysis into
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HPCToolkit, so it would be available on a wide range of platforms.

Our scaling study pointed to several types of problems. One performance issue we

identified using our scalability analysis was the inefficiency of user-level implementation

of reductions in both CAF and UPC codes. A drawback of source-level user-implemented

reductions is that they introduce performance portabilityproblems. The appropriate so-

lution is to use language-level or library implementationsof reductions, that can be tuned

offline to use the most efficient algorithms for a particular platform. An obstacle to scalabil-

ity for CAF codes was a blocking implementation of thesync notify synchronization

primitive. Finally, for both CAF and MPI applications we found that some codes performed

successive reductions on scalars; the natural remedy for that is to perform aggregation of

reductions by using the appropriate vector operations. An important result was that the

relative excess work metric readily identified these scalability bottlenecks.

The scaling analysis of CAF codes indicated the urgency of language-level support

for collective operations. Consequently, we explored and evaluated collective operations

extensions to the CAF model and presented an implementationstrategy based on the MPI

collectives. For the NAS MG benchmark, using the language-level collectives led to a

reduction of the initialization time by 60% on 64 processors, and led to a reduction of the

measured running time for LBMHD of 25% on 64 processors.

Unsurprisingly, our scaling analysis identified exposed communication latency as a ma-

jor scalability impediment. In companion work, Dotsenko [72] proposed several strategies

for latency hiding: CAF language extensions for computation shipping and multiversion

variables for producer-consumer patterns. However, further compiler analysis and runtime

improvements are necessary to tune the granularity of communication to target architec-

tures. We need to improve the usability of our calling context tree viewer by making it

easier for users to identify trouble spots when analyzing large applications, for example by

computing and displaying summary information for the scalability metrics. Our scalability

analysis methodology supports SPMD programs; we need to extend it to analyze parallel

programs that utilize dynamic activities.
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Appendix A

Scaling Analysis of Parallel Program Performance

In Chapter 11 we described an automatic scaling analysis method, the software infrastruc-

ture used to implement it, and presented scaling analysis results which gave us insight into

scaling problems for several applications. In this chapterwe present applications of our

scaling method for other MPI and CAF codes, spanning severalof NAS benchmarks. For

all the benchmarks analyzed we focused on small problem sizes, which tends to expose lack

of scalability due to communication and synchronization inefficiencies on a small number

of processors. For historical reasons, we used the average excess work scaling metric.

A.1 Analysis of the NAS MG Benchmark

The MG multigrid kernel calculates an approximate solutionto the discrete Poisson prob-

lem using four iterations of the V-cycle multigrid algorithm on an× n× n grid with pe-

riodic boundary conditions [24]. The MPI version of MG is described in Section 3.2.1.

In Figure A.1 we present the scalability of the MPI version ofNAS MG. The MPI prim-

itives that display increased cost with increasing number of processors areMPI Send,

MPI Wait andMPI Init; the overall loss of efficiency is 75%. The profiling overhead

was of 7-16% for the MPI NAS MG version.

In Figures A.2 we present a screenshot of the scaling analysis results for the MPI ver-

sion of NAS MG. Overall, the average loss of scaling for the main routine is34%. The MPI

initialization routine accounts for9%; the routine performing the multigrid computation,

mg3p, accounts for7%; the MPI finalization routine leads to a scaling loss of3%. The

routineresid costs5%, and the routinezran3 incurs a4% loss of scalability. We dis-

play the results formg3p in Figure A.3; the call toresid accounts for3%, out of which
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Figure A.1: Scalability of relative costs for communication primitives and computation

for the MPI version of the NAS MG benchmark class A (size2563).

the routinecomm3 costs2%; this cost is due to two calls togive3, each costing1%. The

main constributor to the scaling loss ofgive3 is the MPI routinempi send. A call to

psinv accounts for another2% loss of scaling, mostly due to thecomm3 routine as well.

A.2 Analysis of the NAS SP Benchmark

NAS SP is a simulated CFD application that solves systems of equations resulting from

an approximately factored implicit finite difference discretization of three-dimensional

Navier-Stokes equations [24]. SP solves scalar penta-diagonal systems resulting from full

diagonalization of the approximately factored scheme [24]. The MPI version of SP was de-

scribed in Section 3.2.1. In Figure A.4 we present the scalability of relative costs for com-

munication primitives and computation for the MPI version of NAS SP. The graph shows

that the loss of efficiency is of 46% on 64 CPUs, and that the costs ofMPI Waitall in-

crease significantly with an increasing number of processors. The profiling overhead was

of 2-8%.

In Figure A.5 we present the scaling analysis results for theMPI version of NAS SP,
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Figure A.2: Screenshot of strong scaling analysis results for MPI NAS MG class A (size

2563), using average excess work on 1, 2, 4, 8, 16, 32, and 64 processors.

class A. The total scaling loss is21%, out of which the alternate direction integration rou-

tine, adi, accounts for19%; an initialization routine,setup mpi accounts for the re-

maining 2%. Within adi, a call tocopy faces leads to a12% loss of scaling, the

sweeps along the x, y, and z-dimensions account each for2% loss, and theadd routine

incurs a1% scaling loss. We display a screenshot of the scaling analysis results for the

routinecopy faces in Figure A.6. We notice that the culprit is a call tompi wait, with

anIAEW of 11%; by inspecting the source code we determine thatmpi wait is called

to complete the communication with six neighbors performedin copy faces.
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Figure A.3: Screenshot of strong scaling analysis for MPI MGclass A (size2563), using

average excess work on 1, 2, 4, 8, 16, 32, and 64 processors, for the routinemg3p.

A.3 Analysis of the NAS CG Benchmark

The CG benchmark uses a conjugate gradient method to computean approximation to

the smallest eigenvalue of a large, sparse, symmetric positive definite matrix [24]. This

kernel is typical of unstructured grid computations in thatit tests irregular long distance

communication and employs sparse matrix vector multiplication. The MPI version of NAS

CG was described in Section 3.2.1, and the CAF version in Section 6.2. In Figure A.7 we

present the scalability of relative costs for communication primitives and communication

for the MPI version of NAS CG; the results show that the loss ofefficiency on 64 processors
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Figure A.4: Scalability of relative costs for communication primitives and computation

for the MPI version of the NAS SP benchmark class A (size643).

is of 73%, andMPI Wait is the most nonscalable communication primitive. In FigureA.8

we present the same results for the CAF version of NAS CG; the overall loss of efficiency

is of 76% and the routines which exhibit nonscalable costs are armci notify wait

andARMCI Put. In Figure A.9 we present a summary of the user-defined metrics for the

volume of communication and synchronization. The profilingoverhead was of 2-8% for

the MPI version and of 4-13% for the CAF versions.

The relative cost of communication primitives graphs show that the CAF version spends

more time insync wait as the number of CPUs increases. However, by comparing the

CAF and MPI communication primitives and computation scalability graphs, we deter-

mined that in this case, it is a characteristic of the algorithm rather then an inefficiency in

the translation to CAF orcafc run-time library implementation. Notice that both CAF

versions display a similar anomaly when going from 8 to 16 CPUs. The relative cost of

computation is higher for 16 processors than for 8 processors; analysis of the compiler op-

timization report showed that the backend compiler performs the same optimizations. The

relative cost difference is due to increased number of cachemisses for the 16 CPUs version,

due to increased conflict misses.



231

Figure A.5: Screenshot of strong scaling analysis results for MPI NAS SP class A (size

643), using average excess work on 4, 9, 16, 25, 36, 49, and 64 CPUs.
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Figure A.6: Screenshot of strong scaling analysis results for MPI NAS SP class A (size

643), using average excess work on 4, 9, 16, 25, 36, 49, and 64 CPUs, for the routine

copy faces.
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Figure A.7: Scalability of relative costs for communication primitives and computation

for the MPI version of the NAS CG benchmark class A (size 14000).

Figure A.8: Scalability of relative costs for communication primitives and computation

for the CAF version of the NAS CG benchmark class A (size 14000).
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CPUs PUTs PUT vol GETs GET vol notifies waits barriers

1 0 0 3 16 0 0 15

2 1680 46598912 5 40 3360 3360 15

4 1680 46598912 9 72 3360 3360 15

8 2944 34957824 17 264 5888 5888 15

16 2944 34957824 33 520 5888 5888 15

32 4208 23316736 65 2056 8416 8416 15

64 4208 233167367 129 4104 8416 8416 15

Figure A.9: Communication and synchronization volume for the CAF version of NAS

CG, class A (size14000).

Figure A.10: Screenshot of strong scaling analysis resultsfor MPI NAS CG class A (size

14000), using average excess work on 1, 2, 4, 8, 16, 32, and 64 CPUs.
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Figure A.11: Screenshot of strong scaling analysis resultsfor MPI NAS CG class A (size

14000), using average excess work on 1, 2, 4, 8, 16, 32, and 64 CPUs, for the routine

conj grad.
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Figure A.12: Screenshot of strong scaling analysis resultsfor CAF CG class A (size

14000), using average excess work on 1, 2, 4, 8, 16, 32, and 64 CPUs.
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Figure A.13: Screenshot of strong scaling analysis resultsfor CAF CG class A (size

14000), using average excess work on 1, 2, 4, 8, 16, 32, and 64 CPUs, for the routine

conj grad psbody.
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We present strong scaling analysis results for the MPI version of NAS CG class A in

Figure A.10. The total scaling loss is61%; conj grad accounts for50%, the MPI initial-

ization routine incurs a7% loss,makea leads to a4% loss, and the MPI finalization routine

has anIAEW of 2%. By analyzing furtherconj grad, as displayed in Figure A.11, we

notice that two large factors in scaling loss are two calls tompi wait, with IAEW scores

of 14% and11%, respectively. By using the source correlation feature, wedetermine that

mpi wait is used to implement several sum reductions for a sparse matrix-vector product.

This result is consistent with the results of relative cost scaling for selected communication

primitives presented in Figure A.7. Also, theEAEW for conj grad is 4%, which shows

that the local computation does not exhibit linear scaling either.

In Figures A.12 and A.13 we present screenshots of strong scaling analysis for the

CAF version of NAS CG class A using the ARMCI communication library. The results

in Figure A.12 show thatIAEW for the main routinecg is 83.6%, out of which62.6%

is due toconj grad psbody, the main timed conjugate gradient routine,10% is due to

cafinit, 4.5% is due the call ofconj grad psbody in the initialization phase,3.4%

is due tomakea, that generates the sparse matrix input data,1% is due tocaffinalize.

Figure A.13 shows that forconj grad psbody 19.1% of average excess work is actu-

ally due to exclusive costs, which means that the local computation is not scalable either.

ARMCI Put is responsible for11.1% excess work, calls toarmci notify wait are re-

sponsible for15%, and calls to blockingarmci notify are responsible for12% IAEW.

The calls toarmci notify wait correspond to waiting for permission to write on the

remote co-arrays, and are indicative of load imbalance between images.

A.4 Analysis of the NAS LU Benchmark

LU solves the 3D Navier-Stokes equation as do SP and BT. LU implements the solution

by using a Successive Over-Relaxation (SSOR) algorithm which splits the operator of the

Navier-Stokes equation into a product of lower-triangularand upper-triangular matrices

(see [24] and [84])). The algorithm solves five coupled nonlinear partial differential equa-
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tions, on a 3D logically structured grid, using an implicit pseudo-time marching scheme.

The MPI and CAF versions of NAS LU are described in sections 3.2.1 and 6.4. In Fig-

ure A.14 we present the scalability of relative costs of communication primitives and com-

putation for the MPI version of NAS LU. The overall loss of efficiency on 64 CPUs is

46%, and the most inefficient communication primitives isMPI Recv. In Figure A.15 we

present the scalability of the CAF version of NAS LU. The overall loss of efficiency on

64 CPUs is 68%, witharmci notify wait most responsible for the loss of scaling. In

Figure A.16 we present a summary of the user-defined metrics for the volume of communi-

cation and synchronization. The profiling overhead was of 3-10% for the MPI version and

of 4-11% for the CAF versions.

For CAF NAS LU, as the number of CPUs increases the time spent in sync wait

increases. Even though the communication and synchronization volume point to an in-

creases number ofPUTs, the number of synchronization events is not double the number

of PUTs. The bottom up view shows that the large time spent insync wait is due to load

imbalance, waiting for the data to arrive, rather than to theinefficiency of the handshake.

However, having non-blocking notifies might reduce the waittime as well, because the

extra network latency exposed for the source processor of aPUT before the notification is

sent is observed as well by the destination processor. The CAF versions using ARMCI and

GASNet as communication libraries display the same scalability characteristics.

In Figure A.17 we show a screenshot of strong scaling analysis results using average

excess work for the MPI version of NAS LU, class A. The overallnonscalability score

is 19%, with the routinessor responsible for18%, and the communication initialization

function,init comm, accounting for1%. Within ssor, rhs accounts for6%, blts for

5%, andjacld for 2%. By focusing more closely onssor, as shown in Figure A.18, we

determined that the main culprit for the loss of scaling ofssor were calls to the commu-

nication routineexchange 3.

In Figures A.19 and A.20 we present screenshots with resultsof strong scaling analysis

for the CAF version of NAS LU using average excess work on 1, 2,4, 8, 16, 32, and 64
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Figure A.14: Scalability of relative costs for communication primitives and computation

for the MPI version of the NAS LU benchmark class A (size643).

Figure A.15: Scalability of relative costs for communication primitives and computation

for the CAF version of the NAS LU benchmark class A (size643).

CPUs. The results in Figure A.19 show that the the nonscalability score for the main routine

applu is 34%; the score for the routinessor, which performs successive overrelaxation,

is 33%, and forcafinit is 1%. Within ssor, the routinebuts, which computes the

regular-sparse block-upper triangular solution, has anIAEW of 20%, the routineblts
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CPUs PUTs PUT vol GETs GET vol notifies waits barrier

1 0 0 16 416 0 0 299

2 15756 121141440 9 232 16007 16004 299

4 31510 121141440 9 232 32012 32008 299

8 31510 95773440 9 232 32012 32008 299

16 31510 60132480 9 232 32012 32008 299

32 31510 44731200 9 232 32012 32008 299

64 63012 61375968 9 232 64018 64018 299

Figure A.16: Communication and synchronization volume forthe CAF version of NAS

LU, class A (size643).

is responsible for7%, rhs for 3%, andjacld for 3%. In Figure A.20 we analyze the

scalability of the routinebuts; the results show that the major reason for nonscalability is

thearmci notify wait primitive, used to determine if a data transfer to a local image

completed. This result is consistent with the one determined using the first type of analysis.

A.5 Analysis of the NAS BT Benchmark

The NAS BT benchmark is a simulated CFD application that solve systems of equa-

tions resulting from an approximately factored implicit finite-difference discretization of

three-dimensional Navier-Stokes equations. BT solves block-tridiagonal systems of 5x5

blocks [24] and uses skewed block distribution called multipartitioning [24, 148]. We dis-

cussed the MPI version of NAS BT in Section 3.2.1 and described the CAF version in

Section 6.3.

In Figure A.21 we present the scalability of relative costs of communication primitives

and computation for the MPI version of NAS BT. The overall loss of efficiency on 64 CPUs

is 14%; theMPI Wait routine shows worst scaling In Figure A.22 we present the relative

costs of communication primitives and computation for the CAF version of NAS BT. On
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Figure A.17: Screenshot of strong scaling analysis resultsfor MPI NAS LU class A (size

643), using average excess work on 1, 2, 4, 8, 16, 32, and 64 CPUs.

64 CPUs, CAF BT loses 28%, withARMCI Put andarmci notify wait being the

least scalable communication primitives. In Figure A.23 wepresent a summary of the

user-defined metrics for the volume of communication and synchronization. The profiling

overhead was of 5-6% for the MPI and the CAF versions.

By inspecting the scalability graphs, we notice that computation amounts for 75-80%

of the relative cost. Even though the number ofPUTs increases also quadratically with

the number of processors, the CAF implementation trades extra buffer for synchronization,

reducing the cost of a handshake. The high relative cost of computation on cluster platform
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Figure A.18: Screenshot of strong scaling analysis resultsfor the MPI version of NAS LU

class A (size643), using average excess work on 1, 2, 4, 8, 16, 32, and 64 CPUs, for the

subroutinessor.

explains why communication aggregation for BT didn’t yieldto significant improvement

on a shared memory platform such as SGI Altix 3000.

In Figures A.24 and A.25 we present screenshots of strong scaling analysis results

using average excess work on 4, 9, 16, 25, 36, 49, and 64 CPUs. TheIAEW score for the

main routine is5%, out of which theadi routine accounts for4%. Insideadi, x solve

causes a4% scaling loss,y solve leads to a2% loss, andz solve causes a1% loss. By

further analyzingx solve, as shown in Figure A.25, we determine that a call tolhsx

has anEAEW cost of4%, which indicated that nonscaling node computation is a cause of

nonscalability for MPI NAS BT.

In Figures A.26 and A.27 we present screenshots with resultsof strong scaling anal-

ysis for the CAF version of NAS BT using average excess work on4, 9, 16, 25, 36, 49,

and 64 CPUs. Figure A.26 shows that the scalability score forthe main routinempbt is
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Figure A.19: Screenshot of strong scaling analysis resultsfor the CAF version of NAS LU

class A (size643), using average excess work on 1, 2, 4, 8, 16, 32, and 64 CPUs.

21%, with the main routine responsible for that beingadi. Within adi, which performs

alternate direction integration,y solve has anIAEW score of12%, x solve of 5%

andz solve of 4%. In Figure A.27 we present the analysis results for they solve

routine, which performs alternate direction integration along the y dimension. The routine

lhsy psbody, which performs , is has anIAEW andEAEW values of10%, exposing
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Figure A.20: Screenshot of strong scaling analysis resultsfor the CAF version of NAS LU

class A (size643), using average excess work on 1, 2, 4, 8, 16, 32, and 64 CPUs, for the

functionssor.

the fact that the computation performed bylhsy psbody doesn’t scale linearly with an

increasing number of processors. In the routiney send solve info psbody, IAEW

for ARMCI Put is 1%. Calls tosyncwait andy solve cell have values of1% and

1% for IAEW , respectively. This shows that for BT the main factor for non-scalability

now is the lack of scalability of the computation.
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Figure A.21: Scalability of relative costs for communication primitives and computation

for the MPI version of the NAS BT benchmark class A (size643).

Figure A.22: Scalability of relative costs for communication primitives and computation

for the CAF version of the NAS BT benchmark class A (size643), using the ARMCI

communication library.
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CPUs PUTs PUT vol GETs GET vol notifies waits barriers

4 3021 283153800 8 196 2820 2820 237

9 4830 252010080 13 424 4026 4026 237

16 6639 220849560 20 868 5232 5232 237

25 8448 178226400 29 1600 6438 6438 237

36 10257 157997160 40 2692 7644 7644 237

49 12066 149735520 53 4216 8850 8850 237

64 13875 139170360 68 6244 10056 10056 237

Figure A.23: Communication and synchronization volume forthe CAF version of NAS

BT, class A (size643).

Figure A.24: Screenshot of strong scaling analysis resultsfor MPI NAS BT class A (size

643), using average excess work on 4, 9, 16, 25, 36, 49, and 64 CPUs.
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Figure A.25: Scalability of relative costs for communication primitives and computation

for the CAF version of NAS BT class A (size643), for the routinex solve, using average

excess work on 4, 9, 16, 25, 36, 49, and 64 CPUs.
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Figure A.26: Screenshot of strong scaling analysis resultsfor the CAF version of NAS BT

class A (size643), using average excess work on 4, 9, 16, 25, 36, 49, and 64 CPUs.
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Figure A.27: Screenshot of strong scaling analysis resultsfor the CAF version of NAS BT

class A (size643), for the routiney solve, using average excess work on 4, 9, 16, 25, 36,

49, and 64 CPUs.
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Appendix B

Extending CAF with collective operations

Our experiments showed that the lack of language support forcollective operations leads

to suboptimal, non-performance portable user implementation. In many scientific opera-

tions collective primitives such as reductions occur on thecritical path, for example when

checking a convergence criteria; having a performance portable way to provide collective

operations for CAF programmers is then critical.

In this section we present an extension of the CAF model with collective operations.

Many parallel algorithms [91] are designed using operations such as reductions, broadcast,

scatter, gather, and all-to-all communication. We presentCAF extensions that support

these operations. We chose not to support the full set of reductions present in HPF, but

rather support a minimal set of operations that suffice to express a wide range of commonly

used parallel algorithms. We did not include for example dimensional reductions, because

we did not see them utilized in the codes and algorithms that we analyzed. In particular,

the proposed collective primitives were sufficient to express the collective communication

encountered in our CAF benchmarks.

We describe an implementation strategy for CAF collective operations that realizes

them using MPI calls. A motivation for our design choice is that, native implementations

of MPI optimize the collective operations, and MPI is a performance portable translation

target. However, for platforms where there are more efficient alternatives to MPI,cafc

would choose the more efficient implementation for the collective operations.

For expressiveness and ease of use, the CAF collective operations should operate on

scalar and multi-dimensional co-arrays, on private and shared variables; a CAF compiler

runtime might optimize the implementation of the collective operation based on the type of
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the arguments.

A CAF programmer should be able to use collective routines onthe complete set of

process images, but also on groups of processors. The designof process image groups is

an orthogonal issue, and has been tackled by Dotsenko [72].

B.1 Reductions

CAF REDUCE(SOURCE, DEST, SIZE, OPERATOR, root, [,UDFUNC][,group])

• OPERATOR

– CAF SUM

– CAF PROD

– CAF MAX

– CAF MIN,

– CAF AND

– CAF OR

– CAF XOR

– UDFUNCCOMM: user defined reduction operator, commutative

– UDFUNCNONCOMM: user defined reduction operator, non-commutative

• root: image that will contain the reduction result

• UDFUNC: user defined associative reduction operator

• group: group of processors

CAF ALLREDUCE(SOURCE, DEST, SIZE, OPERATOR [,UDFUNC][,group])

• OPERATOR

– CAF SUM
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– CAF PROD

– CAF MAX

– CAF MIN,

– CAF AND

– CAF OR

– CAF XOR

– UDFUNCCOMM: user defined reduction operator, commutative

– UDFUNCNONCOMM: user defined reduction operator, non-commutative

• UDFUNC: user defined associative reduction operator

• group: group of processors

CAF PREFIXREDUCE(SOURCE, DEST, SIZE, OPERATOR [,UDFUNC][,group])

• OPERATOR

– CAF SUM

– CAF PROD

– CAF MAX

– CAF MIN,

– CAF AND

– CAF OR

– CAF XOR

– UDFUNCCOMM: user defined reduction operator, commutative

– UDFUNCNONCOMM: user defined reduction operator, non-commutative

• UDFUNC: user defined associative reduction operator
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• group: group of processors

The user defined reductions operators have the following structure:

procedure UserDefinedOperatorInPlace(a,b)
b = a op b

end procedure

where a and b have the same type and correspond to scalar types(primitive or user-

defined types)

Comments and restrictions

• for CAF REDUCE, only the image root receives a copy of the result after the reduc-

tion

• CAF ALLREDUCE has the semantics of an all-to-all reduction: allimages have a

copy of the results at the end

• SOURCE, DEST have the same type and size SIZE is expressed in number of ele-

ments

• if group is not present, the reduction applies to all images

• there is an increasing, consecutive numbering of all imagesin group

• root is a valid image number

• arithmetic, relational and logical operators apply only for SOURCE and DESTINA-

TION of the appropriate type

• if the type for SOURCE and DEST contains pointer fields, theirvalues are undefined

after the reductions; pointer fields cannot be used in the user-defined operator
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B.2 Broadcast

CAF BCAST(SOURCE, SIZE, root [,group])

• SIZE is expressed in number of elements

• root is a valid image number

• if the type for SOURCE contains pointer fields, their values are undefined after the

broadcast; broadcast acts as if a bitwise copy is performed for the SOURCE data

B.3 Scatter/AllScatter

CAF SCATTER(SOURCE, DEST, SIZE, root [,group])

• SOURCE and DEST have the same type

• SOURCE and DEST will be treated as one-dimensional, one-based arrays for the

scatter operation

• SIZE is expressed in number of elements

• root is a valid image number

• if the group argument is not present, the scatter operation applies to all images

• there is an increasing, consecutive numbering of all imagesin group, fromplb to pub

• Considering SOURCE as a unidimensional array, after scatter every image p (in-

cluding root) contains in DEST the array section SOURCE((p − plb) ∗ SIZE + 1 :

(p − plb) ∗ SIZE)) on the root image

• the argument SOURCE is optional on any non-root image
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B.4 Gather/AllGather

CAF GATHER(SOURCE, DEST, SIZE, root [,group])

• SOURCE and DEST have the same type

• SOURCE and DEST will be treated as one-dimensional, one-based arrays for the

gather operation

• SIZE is expressed in number of elements

• root is a valid image number

• if the group argument is not present, the gather operation applies to all images

• there is an increasing, consecutive numbering of all imagesin group, fromplb to pub

• after gather, the root image contains in DEST((p−plb)∗SIZE+1 : (p−plb)∗SIZE))

the contents of SOURCE(1 : SIZE) on image p.

• the argument DEST is optional on any non-root image

CAF ALLGATHER(SOURCE, DEST, SIZE [,group])

• SOURCE and DEST have the same type

• SOURCE and DEST will be treated as one-dimensional, one-based arrays for the

allgather operation

• SIZE is expressed in number of elements

• root is a valid image number

• if the group argument is not present, the gather operation applies to all images

• there is an increasing, consecutive numbering of all imagesin group, fromplb to pub

• after gather, every image contains in DEST((p−plb)∗SIZE+1 : (p−plb)∗SIZE))

the contents of SOURCE(1 : SIZE) on image p.
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B.5 All-to-all Communication

CAF ALLTOALL( SOURCE, DEST, SIZE [,group])

• SOURCE and DEST have the same type

• SOURCE and DEST will be treated as one-dimensional, one-based arrays for the

allgather operation

• SIZE is expressed in number of elements

• if the group argument is not present, the gather operation applies to all images

• there is an increasing, consecutive numbering of all imagesin group, fromplb to pub

• after gather, every imageq contains in DEST((p−plb)∗SIZE+1 : (p−plb)∗SIZE))

the contents of SOURCE((q − plb) ∗ SIZE + 1 : (q − plb) ∗ SIZE)) on imagep.

B.6 Implementation Strategy

A portable implementation strategy is to translate these collective operations into their cor-

responding MPI counterparts; both ARMCI and GASNet supportinteroperability with

MPI. If both source and destination are co-arrays and the underlying communication li-

brary has a more efficient implementation of a collective operation than the one provided

by MPI, thencafc would choose at runtime the native implementation of the collective

over the one provided by MPI. For primitive types, the translation is straightforward. MPI

provides a rich set of primitive types that matches the set ofprimitive types of Fortran 95;

cafc would pass as an argument to the MPI collective operation theMPI datatype cor-

responding to the CAF type. For user defined types, we determine at program launch the

size (including padding) of a user defined type, and declare an opaque MPI datatype of the

same size as the user defined type. This approach is sufficientto support broadcast, scatter,

gather and all-to-all operations. To support user defined reductions, we need to generate

functions corresponding to the user defined operators in theformat specified by MPI.
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void MPIUserDefinedFunction(invec, outvec, len, mpi_datatype)

type invec(*)

type outvec(*)

integer len

integer mpi_datatype

A simple solution is to generate a wrapper with the proper setof arguments, iterate

throughinvec andoutvec and call the user specified reduction operator with the cor-

responding elements frominvec andoutvec. However, this version would be very

inefficient, because it would incur a function call cost per array element. A more efficient

approach is to declare an attribute for the user defined operators, acting as a flag to the

compiler. cafc could then synthesize at compile time a user-defined reduction operator

which follows the MPI requirements, butinlinesrather then calls the user defined operator.

Another argument for annotating user-defined operators is that the reduction operator needs

to be registered with the MPI library. If we do not flag tocafc the user defined operators,

then we have to generate the functions required by MPI per each callsite of such reduction,

which might inquire a large space penalty for programs that perform many reductions with

user-defined operators.

B.7 Experimental Evaluation of Reductions

We have implemented support for broadcast and reductions ofprimitive types incafc

using the MPI collectives as translation target. For MG, after replacing the suboptimal

user-written collective calls (broadcast and allreduce operations) with CAF intrinsics based

on MPI, the initialization time decreased by to 40% on 64 processors. In Figure B.1 we

present the the parallel efficiency plot for LBMHD using the prototype implementation of

CAF collective intrinsics; one observation is that our translation scheme does not introduce

a high overhead over direct calls of MPI primitives.
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Figure B.1: Scalability of MPI and CAF variants of the LBMHD kernel on an Ita-

nium2+Myrinet 2000 cluster.


