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Abstract

Large scale parallel simulations are fundamental toolef@ineers and scientists. Con-
sequently, it is critical to develop both programming maedatd tools that enhance devel-
opment time productivity, enable harnessing of massipealsallel systems, and to guide
the diagnosis of poorly scaling programs. This thesis a$@® this challenge in two
ways. First, we show that Co-array Fortran (CAF), a sharediory parallel program-
ming model, can be used to write scientific codes that exhigk performance on modern
parallel systems. Second, we describe a novel techniquantayzing parallel program
performance and identifying scalability bottlenecks, apgly it across multiple program-
ming models.

Although the message passing parallel programming modeiges both portability
and high performance, it is cumbersome to program. CAF daseburden by providing
a partitioned global address space, but has before now eely implemented on shared-
memory machines. To significantly broaden CAF’s appeal, heevsthat CAF programs
can deliver high-performance on commodity cluster plat®r We designed and imple-
mentedcaf c, the first multiplattorm CAF compiler, which transforms CAffograms
into Fortran 90 plus communication primitives. Our studésw that CAF applications
matched or exceeded the performance of the correspondisgage passing programs.
For good node performanceaf ¢ employs an automatic transformation called procedure
splitting; for high performance on clusters, we vectorine aggregate communication at

the source level. We extend CAF with hints enabling overfagponmunication with com-



putation. Overall, our experiments show that CAF versidri$AS benchmarks match the
performance of their MPI counterparts on multiple platferm
The increasing scale of parallel systems makes it critgitpoint and fix scalability

bottlenecks in parallel programs. To automatize this gecee present a novel analysis
technique that uses parallel scaling expectations to ctergmnalability scores for calling
contexts, and then guides an analyst to hot spots usingenaatitve viewer. Our technique
is general and may thus be applied to several programmingisiad particular, we used
it to analyze CAF and MPI codes, among others. Applying oatyais to CAF programs
highlighted the need for language-level collective operest which we both propose and

evaluate.
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Chapter 1

Introduction

Large scale parallel simulations are an essential tooldiensists and engineers. Providing
scientific codes developers with parallel programming netieat enable them to be pro-
ductive and to effectively harness the power of current malysparallel systems has been
a long standing challenge for the computer scientists inhigha-performance scientific
community. It is a hard reality that often parallel applioas do not achieve the desired
scalability, and programmers spend considerable efforhguthe applications to achieve
high-performance. To direct and prioritize the optimiaateffort, it is important to have
tools that enable programmers to quickly diagnose and fiagh#nts of their codes that do
not scale according to their expectations.

Recently, it has become clear that increasing processok &lequency to build faster
computers has reached fundamental physical barriers daxeéssive power consumption
and heat dissipation. Major computer vendors are therdfoilding multicore chips to
increase the performance of computers for next generatsigds of consumer market
processors [18,51,121,132]. As a result, parallel comgus moving into a high-profile,
mainstream role, and the delivery of effective parallelgpemnming models is a high pri-
ority task.

The desirable features for a parallel programming modelipease of useso users are
productive; ii)expressivenesso programmers can code a wide range of algorithms; iii)
high-performancgeso parallel codes utilize efficiently the capabilities giaallel system
of choice, and ivperformance portabilityso programmers can write their code once and
achieve good performance on the widest possible range afi@laarchitectures. Existing

programming models, such as Message Passing Interface (MR] High-Performance



Fortran (HPF) [128], and OpenMP [133] have various drawback

MPI is a library-based parallel programming model thae®bn message passing com-
munication. Itis widely portable, and supported on pradtycevery architecture of interest
for parallel computing. Most large scale parallel codesvaiigten using MPI, which has
become theale factostandard for parallel computing. MPI 1.1 usesva-sided(send and
receive) communication model to communicate data betwesrepses. With a two-sided
communication model, both the sender and receiver expligérticipate in a communi-
cation event. As a consequence, both sender and receiveotariy set aside their com-
putation to communicate data. Note that having two prosessmplete a point-to-point
communication explicitly synchronizes the sender andiveceYears of experience with
MPI have shown that while it enables achieving performaitades so at a productivity
cost. Writing MPI codes is difficult, error prone, and it demda that programmers select
and employ the proper communication primitives to achiegé performance.

Language-based programming models offer an alternativibrary-based program-
ming models. In particular, compilers for parallel programg languages have an op-
portunity to deliver portable performance. HPF relies egnlely on capable compilers to
generate efficient code, and a user has little control owefittal performance of a HPF
program. As of this writing, HPF has not delivered high perfance for a wide range of
codes. OpenMP enables a user to develop quickly a parafietapon by specifying loop-
and region-level parallelism; however, since users caspetify affinity between data and
processors, OpenMP programs have difficulties in scalitey¢® hardware shared memory
systems. Also, OpenMP codes do not yield scalable perfazenan distributed memory
systems.

Partitioned Global Address Space (PGAS) languages, suCb-#sray Fortran [155],
Unified Parallel C [45], and Titanium [198], offers a pragioalternative to the HPF
and OpenMP language models. They enable scientific progessito write performance
portable and scalable parallel codes using available dentpchnology, whereas HPF and

OpenMP require significant compiler technology improvetadn enable developers to



achieve similar scalability and performance portabilitjhe PGAS languages offer a par-
titioned global space view, with two-levels of memolgcal andremote Communication
and synchronization are part of the language, and theraferamenable to compiler opti-
mization. Users retain control over performance-critaadisions such as data distribution
and computation and communication placement.

In this thesis we present our experiences with Co-Arrayr&or(CAF). CAF provides
a SPMD programming model that consists of a set of paraltelnstons to Fortran 95. The
central concept of CAF is thep-array. At the language level, co-arrays are declared as reg-
ular Fortran 95 arrays, with a bracket notation at the endhag/n in Figure 1.1. The effect
is that all process images contain an instance of the cg;aha co-array instance present
on a process image is denoted the “local part” of the co-dmathat process image, while
the remaining instances are “remote co-array parts.” Usersccess both local and remote
co-array memory by using subscripted references. One qgae&xbulk communication at
the source level by using Fortran 95 array section refeerCAF use®ne-sided commu-
nication (PUT or GET) to access remote data. When using one-sided communicatien
process image specifies both the source and the destindttmmonunicated data. From
the programmer’s perspective, the other process imagd swvare of the communication.
Thus, the one-sided model cleanly separates data moveraensynchronization; this can
be particularly useful for simplifying the coding of irrelgm applications.

Tuning of parallel applications is an important step on trertowards high-performance
and scalability. To help users efficiently diagnose thealiag impediments, we describe
and evaluate a novel scaling analysis technique that adiatig quantifies how much
calling contexts deviate from their expected scalabilitg #hat uses an interactive viewer
to efficiently guide a user to scaling hot spots in the code.d&fonstrate that our tech-
nique is effective when applied across multiple prograngmwiodels, to a wide range of

codes, and that it determines different causes of scélapiioblems.
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Figure 1.1: Graphical representation of a co-array: evergge has an instance of the

array.

1.1 The Co-Array Fortran Programming Model

Co-array Fortran supports SPMD parallel programming tghoa small set of language
extensions to Fortran 95. An executing CAF program consists static collection of
asynchronous process images. Similar to MPI, CAF prograipiscély distribute data and
computation. However, CAF belongs to the family of Globaldkess Space programming
languages and provides the abstraction of globally addessiemory for both distributed
and shared memory architectures.

CAF supports distributed data using a natural extensiorotrdn 95 syntax. For ex-
ample, the declaration presented and graphically repregémFigure 1.1 creates a shared
co-arraya with 10 x 20 integers local to each process image. Dimensions insidaequ
brackets are called co-dimensions. Co-arrays may be @elcfar user-defined types as
well as primitive types. A local section of a co-array may bsiregleton instance of a
type rather than an array of type instances. Co-arrays catalie objects, such as COM-
MON or SAVE variables, or can be declared as ALLOCATABLE wahifes and allocated

and deallocated dynamically during program executiomgisollective calls. Co-arrays of



user-defined types may contain allocatable componentsjwvdain be allocated at runtime
independently by each process image. Finally, co-arragatdcan be passed as procedure
arguments.

Instead of explicitly coding message exchanges to acceaddbonging to other pro-
cesses, a CAF program can directly reference non-locaksalging an extension to the
Fortran 95 syntax for subscripted references. For instgm@Eessp can read the first
column of co-array from procesp+1 referencinga(:, 1) [ p+1] .

CAF has several synchronization primitivesync _al | implements a synchronous
barrier across all imagesync_t eamis used for barrier-style synchronization among
dynamically-formedeamsof two or more processes; async_nmenory implements a
local memory fence and ensures the consistency of a praveggis memory by complet-
ing all of the outstanding communication requests issueithisyimage.

Since both remote data access and synchronization aredgegrimitives in CAF,
communication and synchronization are amenable to compésed optimization. In con-
trast, communication in MPI programs is expressed in a metailéd form, which makes
effective compiler transformations much more difficult.

A more complete description of the CAF language can be fonrnti54, 156].

1.2 Thesis Statement

Co-array Fortran codes can deliver high performance andagdity comparable to that
of hand-tuned message-passing codes across a broad raragehutectures. When CAF
programs or other SPMD parallel codes do not achieve therddgerformance and scal-

ability, we can automatically diagnose impediments tortealability.

1.3 Joint Contributions

Before this work, CAF was implemented only on Cray T3E and ¥dtams. These ma-

chines support a global shared address space in hardwapeaide efficient vector prim-



itives for remote memory accesses. For wide acceptance, SDAEld ideally be imple-
mented on a wide range of machines, including clusters #ukt hardware support for a
global address space. One could envision a user developoh¢gesating a program on a
multicore laptop, then deploying and running it on the latg®arallel machine of choice.
In joint work with Yuri Dotsenko at Rice University, we impteentedcaf c, the first mul-
tiplatform, open source CAF compiler, as a source-to-sotmnanslation system. We re-
fined the CAF programming model to enable users to write perdoce portable codes,
To demonstrate that CAF applications can achieve scalahitid high-performance on a
wide range of systems, we developed CAF codes, determineotanizations necessary
to achieve high-performance, and showed that the resultidgs matched the performance
their of hand-tuned MPI counterparts.

caf c transforms CAF sources into Fortran 95 augmented with coniration code,
using a near-production-quality front-end Open64/SL [15&e implemented theaf c
runtime on top of one-sided communication libraries suctAR8MCI [150] and GAS-
Net [33]. caf c is capable of mapping CAF onto clusters that lack a sharedanefabric.

CAF is not yet a language standard. Our goaldaf ¢ was to support sufficient CAF
features so that users can write nontrivial and efficienalpelrcodes. Incaf ¢ we im-
plemented declarations of COMMON, SAVE, ALLOCATABLE andrpmeter co-arrays,
declarations of co-arrays of primitive and user-defineesypwith allocatable components,
local and remote co-array accesses, and a subset of CARSIoH|

The original CAF programming model was implemented on Graystems with tightly-
coupled hardware support for global address space. Aothr assumptions that came
from these systems made their way into the programming motelenable CAF pro-
grammers to write performance portable codes, we refinedCtkieé model by relaxing
the requirement that each procedure call implies a fence feetefely ensuring that all
communication issued before the procedure call completesinee it would limit the po-
tential overlap of communication with computation. The CéAledel initially contained

only barrier synchronization, among all processes or angvagps of processes. We ex-



tended the model with the point-to-point synchronizatiomgives sync_not i fy and
sync. wait.

We demonstrated that CAF can match or exceed MPI performianaddes such as
the NAS MG, CG, BT, SP and LU [24], the Sweep3D [6] neutron $gort code, and
the LBMHD kernel [157], on both cluster and shared memonhigéectures. This is an
important scientific result, because the previous implaatem of CAF enabled achieving
high performance only on Cray global address space systems.

Sincecaf ¢ performs source-to-source translation, to achieffecient node perfor-
manceit must generate code amenable to backend compiler anagsioptimization.
For efficient communicatiorgaf ¢ relies on the underlying communication library (e.g.
ARMCI or GASNet) to allocate data, separate from the memoanaged by the For-
tran 95 runtime system. Theaf c-generated code uses Fortran 95 pointers to access local
co-array data. This might lead backend compilers to makeyeenservative assump-
tions regarding pointer aliasing and and inhibit importaaip optimizations. To address
this problem, we implemented an automatic transformatiaiwe called procedure split-
ting [73]. If a CAF procedure performs local accesses to Savie COMMON co-arrays,
then procedure splitting converts the procedure into aararnd inner pair of subroutines.
The outer one passes the SAVE and COMMON co-arrays that faeneed as argument
co-arrays to the inner subroutine, together with all thgiogl arguments of the initial pro-
cedure. The inner subroutine performs the same compuitaitime original procedure, but
with all the SAVE and COMMON co-array references convertgd argument co-arrays.
caf c transforms argument co-arrays into dummy array argum@its.overall effect for
thecaf c-generated code is transforming all the local co-array ssEeFortran 95 pointer
references into array argument references. This convegsbckend compiler the lack
of aliasing between co-arrays, their memory contiguity tredr dimensionality. We also
evaluated multiple co-array representations [74].

Communication performancdacreases with communication granularity. For our CAF

codes, we manually applied communication vectorizati@mmunication packing and



aggregation at the source level [56, 73]. For asynchrorgraokce, we introduced and im-
plemented extensions to the CAF language that enable usmdilocking communication
primitives.

To improvesynchronization performancee proposed and evaluated synchronization
strength reduction, a source-level transformation reptaexpensive barrier synchroniza-
tion with lower-cost notify and wait primitives and showesl importance for both regular
and irregular parallel codes. For producer-consumer camcation patterns we discov-
ered that insufficient buffer storage led to additional $ypaization latency exposed on
the execution critical path, which limited parallel perfance. We showed that by us-
ing multiple communication buffers at source level we wdskedo match or exceed the
performance of hand-tuned MPI versions for wavefront agpions and line sweep com-

putations [57, 73].

1.4 New Contributions

To improve the performance and scalability of parallel &dtas crucial to correctly iden-
tify impediments to scalability. To enhance developmemwidpctivity, it is desirable to
pinpoint bottlenecks automatically and focus a progransratention on the parts of the
code that are most responsible for loss of scalability. Tress this need, we developed an
automatic method of pinpointing and quantifying scal@pilinpediments in parallel codes
by determining where codes diverge from a user’s expecisitio

In general, users have well-defined performance expentaftow their codes. For exam-
ple, when attempting strong scaling of a parallel prograsersiexpect that since the prob-
lem size and the work performed remain constant, the toedwion time will decrease
proportionally with the number of processors on which thebal code is executed. When
attempting weak scaling of a parallel program, users expatsince the problem size per
processor remains constant and the number of processoeages, the overall execution
time will remain constant. For sequential applicationsgrasexpect a certain time cost

with respect to the input size; for example, a compiler wmtgght expect that an analysis



phase takes time linear with respect to the program sizeraktipe, it is often the case that
programs do not perform according to the expectations af tevelopers; the challenge
is then to identify which program components deviate thetrfrosn the expected behav-
ior, in order to direct and prioritize the optimization el We present and demonstrate
the effectiveness of our analysis method for both strongrgcand weak scaling parallel
programs.

Our analysis proceeds as follows. Once the expectationfsamally defined, the pro-
gram under analysis is executed on different number of ggmrs. We use a profiling tool
that collects calling context trees (CCTs) [19] for unmaatifi optimized binaries,. In a
CCT, each node corresponds to a procedure, such that th&@atithe root to each node
reflects an actual call path during the program executiore Addes of the CCT are an-
notated with the number of samples that were collected bytbsler in the procedure
corresponding to that node. After running the parallel paogand collecting the CCT
for each execution, we analyze corresponding nodes in thE fGCdifferent number of
processors. Since our expectation is well-defined (e.gatfirscaling of running time or
constant execution time), we can compute automatically hmwh each node deviates
from our ideal scaling annotations. We denote this deunagiacess workand we normal-
ize it by dividing by the total execution time for the paralpeogram; the resulting metric
is denotedelative excess workWe compute this metric for botinclusiveandexclusive
costs; the exclusive costs represent the time spent withartecular procedure, while the
inclusive costs correspond to the sum of the exclusive dosthat procedure and for all
the routines called directly or indirectly by that proceelurdaving metrics for both of these
costs enables us to determine if the lack of scalability flem&tion’s inclusive costs is due
to inefficient work performed in that routine or to calls tautmes with poor scaling. After
computing this metric for all the nodes in the CCT, we use &rattive viewer to display
the annotated CCT, sorting the nodes based on their valdledoelative excess work. The
viewer also displays the source code associated with the@@d&s. Thus, the interactive

viewer enables a user to quickly identify and navigate tositeding trouble spots in the
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code.

To validate the scaling analysis method, we used it to aedlye scalability of MPI,
CAF, and UPC codes. The results highlighted the need for abhaoking implementa-
tion of synchronization primitives for CAF, for language ldarary support of collective
operations in both CAF and UPC, and for aggregation of ctWecalls in MPI codes.
We demonstrated the power of our scaling analysis methodagndsing scalability bot-
tlenecks in multiple programming models and for diverseseauncluding non-scalable
computation, inefficient use of well-implemented primésy and inefficient implementa-
tion of other primitives.

Using lessons learned from the scalability analysis, wdoggd extending the CAF
language with collective operations on groups of processocluding user-defined re-
duction operations on user-defined types. We designed alenneptation strategy that
leverages MPI collective operations and evaluated lang{ge! collectives using several
benchmarks.

Vectorization is an essential transformation for achiguwommunication granularity.
We designed and proved the correctness of an algorithm fopier-directed, dependence-
based communication vectorization of CAF codes.

When scaling CAF to thousands of processors, it is impottahtive synchronization
primitives that can be implemented efficiently, in terms oftbtime and space cost. The
current CAF implementation of point-to-point synchrotiaa primitives is not space ef-
ficient. To address this, we explored an extension of the G/Alelwonization mechanism
with eventcounts, which offer the same expressivenessasela use as the point-to-point

primitives, but require less space.

1.5 Thesis Overview

This thesis is structured as follows. Chapter 2 describegéhationship to prior work.
Chapter 3 presents the Co-Array Fortran language and oengigins, as well as the par-

allel benchmarks we used to evaluate the performance of @AE Chapter 4 describes
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the implementation strategy faraf c. Chapter 5 presents automatic and manual opti-
mizations for improving the performance of local co-arr@égesses and of communica-
tion. Chapter 6 discusses CAF implementations of the NASh@arks [24] BT, CG,
SP and LU and evaluates the impact of optimizations on sealdparallel performance.
Chapter 7 presents an evaluation of the impact of local pedace and communication
optimizations for UPC versions of the NAS benchmarks BT a&l Chapter 8 uses a
2%r full factorial design [123] to evaluate the impact of vectation, aggregation, non
blocking communication and synchronization strength céda on the performance of
the LBMHD benchmark. Chapter 9 explores space-efficientissonization extensions to
CAF. In chapter 10, we discuss the CAF memory model, skettrategy for performing
dependence analysis on Co-Array Fortran codes, and destrilependence-based algo-
rithm for automatic communication vectorization of CAF esd Chapter 11 describes our
scaling analysis techniques and their validation througiegments with CAF, UPC, and
MPI codes. Chapter 12 summarizes our contributions andnigsdand outlines future re-

search directions.
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Chapter 2

Related work

Technologies for parallel programming enabling users toese productivity, expressive-
ness, and scalability have been a longtime focus of resedtclould be desirable for
a user to write a parallel program once, then rely on the abigltools to compile the
program on any particular parallel architecture and aehgevod scalability. In practice,
parallel programming models range from library-basedh@scMessage Passing Interface
(MPYI), to language-based, such as High-Performance FoftfBF) and ZPL. Sections 2.1
and 2.2 discuss several programming models, focusing anrttaén features, ease of pro-
gramming, expressiveness, availability, and documenégtbpnance. We also describe
communication optimization techniques used for those rarmogning models. Section 2.3
discusses other implementations of Co-Array Fortran.

Understanding the performance bottlenecks of parallgnams is a firstimportant step
on the way to achieving high-performance and scalabilitywvduld be desirable to have
tools that automatically analyze unmodified, optimizedaflal codes, determine scaling
impediments, and efficiently point a user to the scaling potsand associate them with
the appropriate source code. Section 2.4 describes psewotk in parallel programs

performance analysis.

2.1 Library-based Parallel Programming Models
2.1.1 Message Passing Interface

Message Passing Interface (MPI) [97,137,138,176] is aryebased parallel program-

ming model based on the two-sided communication messaggAggparadigm. MPI is a
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single-program-multiple-data (SPMD) programming modaelyhich the users have a local
view of computation. The MPI 1.2 [137,138, 176] standardvjtes support for blocking
and non-blocking point-to-point communication, barrjersllective routines such as re-
ductions, broadcast, and scatter-gather, user-defined tmd user-defined communicator
groups. The MPI 2.0 [97, 137] standard adds support for ahedscommunication, pro-
cess creation and management, additional collectiverresitiand parallel 10. A precursor
of MPI was PVM [181].

Even though the MPI 1.2 standard contains over 150 funct&ingies of real applica-
tions have shown that the set of MPI primitives used in pcads smaller [189]. A study
by Han and Jones [100] showed that the 12 applications thelyest spend approximately
60% of their execution time in MPI calls; non-blocking petotpoint communication calls,
such ag Send, | r ecv andWai t , are much more commonly used than the blocking ones,
such asSend andRecv. Among the collective operations, five of them are partidula
common: barrier, allreduce, broadcast, gather and alito-

Figure 2.1 presents an example of Jacobi 2D relaxation sgpdein Fortran and MPI,
omitting the declarations. Each processor packs the quvegigions for the east and west
neighbors. Next, all processors posts non-blocking reseilay callingVvPI _I r ecv, for
the north, south, west and east neighbors. The processamrpt#rform blocking sends,
by callingMPI _Send, to their neighbors, followed by potentially blocking ckedhat the
non-blocking receives from their neighbors have completetly usingMPl Wi t . The
received overlap regions are unpacked and the 5-pointistemperformed by every pro-
cess. Finally, the maximum absolute difference betweeptbé@ous temperature matrix
and the new one is computed by using the collectiveMall Al | _Reduce.

MPI has implementations on virtually every parallel systehey range from open-
source ones [85, 94-96] to vendor versions [163, 174]. Thiguitous availability has
helped MPI become thde factostandard for parallel programming, and enable large
groups of developers to write parallel programs and achielagively scalable perfor-
mance. Carefully hand-tuned MPI codes, such as the NASIebb&nchmarks [22—-24]
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| updat e hal o.
I pack

wSendBuf (1: MM
eSendBuf (1: M)

ANS(1, 1: MV)
ANS( NN, 1: MV)

| post receives

cal | MPI_I RECV( ANS(1, M1), NN, & || check for conpl et i on
mE:EEEEE;FHEFFE;SISE’ VPl COMM VIORLD g call MPI_WAI T(recvNorth, asynch_status, ierr)
recvNort h ierr)’ ' - - ' call MPI_WAI T(recvSout h, asynch_status, ierr)
call Ml IRECV(ANS(l 0), NN & call MPI_WAI T(recvWest, asynch_status, ierr)
VPl DOUBLE PRECISIEN ' ' & call MPI_WAI T(recvEast, asynch_status, ierr)
NEI GHBORS( sout h), 99, MPI_COMM WORLD, & | , unpack
recvSouth, ierr) ANS(EIN+1 1:MM) = eRecvBuf (1: M)
call MPI _I RECV(eRecvBuf (1), MV & VA N
MPI DOUBLE PREC! SI ON, & ANS(0, 1: MM = wRecvBuf (1: M)
NEI GHBORS( east), 99, MPI_COWLVORLD, & | . .
recvEast, ierr) : ?-p0|nt stenc
call MPI_I RECV(wRecvBuf (1), MM g | 4o 3; LM N
MPl _DOUBLE_PRECI SI ON, & o _
NEI GHBORS(west ), 99, MPI _COVMM WORLD, & VRK I'A|J\E<s(|_-(11l10/§3' S)&* (RES(1,9) + &
recv\West, ierr) '
ANS(1+1,0 ) + &
| isend ANS(I, J-1) + &
call MPI_SEND(ANS(1, 1), NN, & enddo ANSCE, J+1) )
MPI _DOUBLE_PRECI Sl ON, & enddo
NEI GHBORS( sout h), 99, MPI _COW WORLD, &

ierr)

| . .
call MPI_SEND(ANS(1, M), NN, I cal cul ate gl obal maxi mum residual error

& _ . .
MPI_DOUBLE_PREC! SI ON, & Pm(‘lwmvﬁLwAB)s’()w(l' NN, 1-MY) - &
?'EL%*BORS(”O”M' 99, MPI_COWLVORLD, & | o1 Pl _ALLREDUCE( PMAX, RESI D_MAX, &
cal| MPI_SEND(wSendBuf (1), MV & | Nt M VBl COMVERD. i err) &
MPI_DOUBLE_PRECI SI ON, & VAR, VTSV '
NEI GHBORS(west), 99, MPI_COMM WORLD, &
ierr)
call MPI _SEND(eSendBuf (1), MM &
MPI_DOUBLE_PRECI SI ON, &
NEI GHBORS( east), 99, MPI _COMM WORLD, &
ierr)

Figure 2.1: 2D Jacobi relaxation example in MPI.

became a yardstick against which any other parallel imphations, library-based or
language-based, are compared and evaluated.

While MPI provides the means to write portable and efficiedes, it has a signifi-
cant productivity drawback. The message passing progragnmbodel is difficult to use
and error-prone. Programs based on library calls are imadity difficult to optimize by
compilers, and in practice, the responsibility for achigvhigh-performance code falls

squarely on application developers. In their quest for digierformance, application de-
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velopers often encode information about the target machkungh as the optimum message
size for the interconnect, into the MPI code; this leads taltta-maintain code, since
potentially one would need to have different versions of ctbenxmunication code tuned
for each architecture of interest. Another drawback is thattwo-sided communication
model might not be best suited for the capabilities of a paldir architecture. In the case of
hardware shared memory machines such as a SGI Altix 30001Z89and Cray X1 [58],
MPI communication calls often introduce extra data copetg/ben source and destination;
on clusters having interconnects with RDMA capabilitiagsisas Myrinet [21, 145, 146],
QSNet Il [161, 164], MPI communication calls would perforxira data copies.

From the perspective of development time productivity, @wd be desirable to use
higher-level, language-based, parallel programming risodather than the library-based
message passing model. The arguments to move higher ondtracion scale from MPI
are that users manage less low-level details, becoming productive; a compiler can
help tailor a parallel program to perform well on a particidechitectures, improving the
performance portability of parallel codes and reducingy ttievelopment and maintenance
costs. These advantages have a strong appeal; howeveeagwnrthat MPI is still the
most widely used parallel programming model is that higlegel programming models
have failed to deliver the high-performance and scalahidit the range of algorithms of
interest across the spectrum of available architecturat, hared-memory and cluster-
based. Delivering both the performance and developmet piraductivity is therefore a
challenge for the parallel computing tools and technolgésearch community.

We show in this thesis that CAF codes can achieve performeogarable to that
of corresponding MPI codes, for a range of applicationsudicig tightly-coupled codes
based on dense matrices, such as NAS BT, NAS SP, NAS MG, andHIBMnd for
sparse irregular problems such as the NAS CG.

Communications optimizations such as vectorization, eggfion, and overlap of non-
blocking communication with computation are widely used/iRl codes. Such optimiza-

tions are however expressed strictly at the source levelRh Bhd we describe how a CAF
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compiler could perform communication vectorization audbically.

MPI has a rich set of collective communication primitivessluding support for broad-
cast, reductions, and scatter-gather operations. Initbgg we propose an implementation
design of CAF collective operations extensions using threesponding MPI primitives,
and show that by using the language-level collective omeratwe are able to reduce the
initialization time of NAS MG by up to 60% on 64 processorsd atso improve the exe-
cution time of LBMHD by up to 25% on 64 processors.

2.1.2 One-sided Communication Libraries

Recent advances in high-performance interconnects maeesidad communication li-
braries attractive for parallel computing. On looselygled architectures, an efficient
one-sided communication library should take advantagesofi®e Direct Memory Access
(RDMA) capabilities of modern networks, such as Myrinet][2hd Quadrics [161]. Dur-
ing an RDMA data transfer, the Network Interface Chip (NIGhtrols the data movement
without interrupting the remote host Central Processing (GPU). This enables the CPU
to compute while communication is in progress. On many prdtessor architectures, a
cache coherence protocol is used to maintain consistertaeba CPU caches and mem-
ory that is the source or sink of communication. On shared amgpiatforms such as Altix
3000, one-sided communication is performed by the CPU usegystore instructions on
globally addressable shared memory. The hardware usesatiydased cache coherence
to provide fast data movement and to maintain consistenwydsn CPU caches and (local
or remote) shared memory. As the study [74] demonstratedshaned-memory archi-
tectures fine-grain one-sided communication is fastes$t eompiler generated load/store
instructions, while large contiguous transfers are fastezn transmitted usingraencpy
library function optimized for the target platform.

Two portable, one-sided, communication libraries are A&ggte Remote Memory Copy
Interface (ARMCI) [150] and the GASNet [33] library.

ARMCI —a multi-platform library for high-performance orsé¢ded communication—



17

as its implementation substrate for global address spanencmication. ARMCI provides
both blocking and split-phase non-blocking primitives tore-sided data movement as
well as primitives for efficient unidirectional synchroatmn. On some platforms, using
split-phase primitives enables communication to be oppea with computation. ARMCI
provides an excellent implementation substrate for glabddress space languages making
use of coarse-grain communication because it achievesg@gbrmance on a variety of
networks (including Myrinet, Quadrics, and IBM’s switclbfa for its SP systems) as well
as shared memory platforms (Cray X1, SGI Altix3000, SGI @2§00) while insulating
its clients from platform-specific implementation issuastsas shared memory, threads,
and DMA engines. A notable feature of ARMCI is its support fmm-contiguous data
transfers [151].

GASNet is a language-independent low level networkingralyat provides portable
support for high-performance communication primitivesched for parallel global address
space SPMD languages. GASNet is composed of two layersother llevel is an inter-
face termed the GASNet core API, based on active messagehbjgher level is broader
interface called the GASNet extended API, which provides-sided remote memory op-
erations and collective operations. GASNet is supportedhigh-performance network
interconnects such as Infiniband, Quadrics, Myrinet, LATl,shared memory platforms
such as the Cray X1 and SGI Altix 3000, and also has portabdeargce implementations
on top of UDP and MPI. To communicate using Active Messageéd)(R90], each mes-
sage sent between communicating processes contains ttgo pae is a message handler
identifier, and the other is the message payload. Upon regean Active Message, a
dispatcher running on the receiving processor determirieshwActive Message handler
should be invoked, invokes it and it passes it the AM payload.

Libraries such as ARMCI and GASNet could be used directlyaetbp parallel appli-
cations, but they are cumbersome to use by a programmezathghey are usually used as
communication layers by source-to-source compilers sectafic and the Berkeley UPC

compiler.
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2.2 Language-based Parallel Programming Models
2.2.1 Unified Parallel C

Unified Parallel C (UPC) [45, 78] is an explicitly paralleltersion of ISO C that supports a
global address space programming model for writing SPMBlfEprograms. In the UPC
model, SPMD threads share a part of their address space. hEnedsspace is logically
partitioned into fragments, each with a special assoaigaffinity) to a given thread. UPC
declarations give programmers control over the distrdsutf data across the threads; they
enable a programmer to associate data with the thread piymaanipulating it. A thread
and its associated data are typically mapped by the systentha same physical node.
Being able to associate shared data with a thread makessifbpe®$o exploit locality. In
addition to shared data, UPC threads can have private datalagprivate data is always
co-located with its thread.

UPC'’s support for parallel programming consists of a few &egstructs. UPC pro-
vides theupc _f or al | work-sharing construct. At run timepc _f or al | is responsible
for assigning independent loop iterations to threads satérations and the data they ma-
nipulate are assigned to the same thread. UPC adds sevewadrkis to C that enable it
to express a rich set of private and shared pointer concgpt€. supports dynamic shared
memory allocation. The language offers a range of synchation and memory consis-
tency control constructs. Among the most interesting syoralzation concepts in UPC
is the non-blocking barrier, which allows overlapping lbcamputation and inter-thread
synchronization. Parallel I/O [77] and collective opevatiibrary specifications [193] have
been recently designed and will be soon integrated intodahedl UPC language specifi-
cations. Also, [34] presented a set of UPC extensions thaltles efficient strided data
transfers and overlap of computation and communication.

UPC and CAF belong to the same family of partitioned globdrads space languages.
Here, we mention some of the important differences betwee@ E@nd CAF. Based on

Fortran 90, CAF contains multidimensional arrays; arrays @o-arrays can be passed as
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procedure arguments, and can be declared with a differagtesfor the callee. Due to
its C legacy, UPC cannot pass multidimensional arrays aswegts; for scientific codes
which manipulate arrays, a UPC user has to resort to poiatetsubscript linearization,
often using macros. To access local co-array data, a CAFrabes on regular Fortran
90 array references, omitting the brackets; in UPC one pedarray references using
the MYTHREAD identifier or C pointers. To access remote eletseCAF uses array ex-
pressions with explicit bracket expressions, while UPGquer flat array accesses through
shared pointers using linearized subscripts. For bulk andesl remote accesses, CAF
uses Fortran 90 array sections, while UPC employs librangtions. UPC provides two
memory consistency models, strict and relaxed. Relaxeglsaes performed by the same
or different threads can be observed in any order; howeekxxed accesses executed by
the same thread to the same memory location, with one aceess &dwrite, are observed
by all threads in order. Strict accesses are observed bigrathds in the same order, as if
there was a global ordering of the strict accesses. If rdlaxeesses occur before a strict
access, the results of the relaxed accesses are observidhogaads before the results of
the strict access; if a strict access is followed by relaxamsses, then the results of the
strict accesses are observed by all threads before theése$uhe relaxed accesses. For
performance reasons, CAF provides a weak release corggistegmory model. The UPC
NAS benchmarks were written using the relaxed memory madainly for performance
reasons. Having strict variables, however, is useful ilkng users to add synchronization
primitives at the source level.

The Berkeley UPC (BUPC) compiler [54] performs sourcedasse translation. It
first converts UPC programs into platform-independent AlRStompliant code, tailors
the generated code to the the target architecture (clusttramed memory), and augments
it with calls to the Berkeley UPC Runtime system, which inntuinvokes a lower level
one-sided communication library called GASNet [33]. The &et library is optimized
for a variety of target architectures and delivers high @ganance communication by ap-

plying communication optimizations such as message coalgsand aggregation as well
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as optimizing accesses to local shared data. We used both@teand 2.1.0 versions of
the Berkeley UPC compiler in our study.

The Intrepid UPC compiler [122] is based on the GCC compirastructure and
supports compilation to shared memory systems includiags@l Origin, Cray T3E and
Linux SMPs. The GCC-UPC compiler used in our study is ver8d2.9, with the 64-
bit extensions enabled. This version incorporates ingjroptimizations and utilizes the
GASNet communication library for distributed memory syste Other UPC compilers
are provided by HP [105] and by Cray [60].

Performance studies of UPC codes on multiple architecf@@7, 42—44,54] iden-
tified as essential optimizations non-blocking commumcatnd computation overlap,
prefetching of remote data, message aggregation and ipdtiah of local shared data,
strip-mining of messages, and efficient address translaperformed either at source or
runtime level.

Chenet al [53] present algorithms for enforcing sequential consisyefor UPC pro-
grams by performing cycle detection. For Co-Array Fortraa,advocate a release consis-
tency memory model for performance reasons.

lancuet al[119] describe a method of automatically generating nmthkhg commu-
nication at runtime level; their implementation is at themulevel, above the level of the
GASNet communication library. One interesting proposébisomplete remote communi-
cation on the first access to the remote data, by using theEBBYGg&nal handler. Cheat
al [52] discuss compiler optimizations for fine grain accessesedundancy elimination,
generation of non-blocking communication events@&iTs andPUTs, and by coalescing
communication events. To coalesce fine grain reads, theopeajtechnique is to prefetch
locally the whole address range between the two reads, qedut is smaller than some
machine-dependent threshold.

UPC was extended with collective operations for broadecadtjctions (including user-
defined reductions), scatter-gather and general perrangafi 93]. While in our proposed

collective primitives extensions to CAF the data argumeaifitsollective operations can
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be either private or shared data, in UPC arguments are eshjtorreside in the shared
space; this requires users that want to use collective bpesaon private data to either
copy the arguments into shared space or to redeclare oatdltite private data as shared
memory variables. A syntactic difference between UPC an& 3Athat for UPC a user
has to specify the appropriate UPC collective operatiomipive, based on the type of the
argument, while for CAF a compiler can infer the type andgtaie the collective operation

accordingly using overloading.

2.2.2 Titanium

Titanium [198] is a parallel global address space languageded as a parallel extension
of Java. Titanium provides a SPMD control model, flexible afiitient multi-dimensional
arrays (potentially amenable to compiler optimizatiorm)ilt-in types for representing
multi-dimensional points, rectangles and general domihiatsare used to perform index-
ing of multidimensional arrays and to specify iterationagsa Titanium supports unordered
loop iteration spaces, which might be exploited by an oting compiler. Titanium en-
ables memory management based on user controlled regesideb regular Java garbage
collection, and user-defined immutable classes. For spnctation, developers use tex-
tual barriers, which simplify compiler analysis of synchization. Objects are shared by
default, but users can control the sharing by using spedcialifters; Titanium possesses
an augmented type system used to express or infer localitglaaring for distributed data
structures. Titanium has a open-source multiplatform enpntation, which is augmented
with a library of useful parallel synchronization operatsaand collectives.

Su and Yelick [178, 179] describe an inspector executor ateth optimize loops with
irregular accesses. The method uses textual barriersisforanGETs intoPUTs, and uses
a hardware performance model to determine how@Be€s or PUTs should be performed.
They reuse a communication schedule if the loop perfornmtiegsectorization is enclosed
into a separate loop and they can prove that the indirectiay & not modified.

Titanium supports broadcast, exchange and reductionu@img user-defined reduc-
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tions) collective operations on teams of processors.

2.2.3 High Performance Fortran

High Performance Fortran (HPF) [80,106,107] is a highlewglicitly parallel program-
ming language. HPF consists of extensions to Fortran 90eawstes a sequential pro-
gram in Fortran 90, then adds HPF directives to the Fortrate @nd then uses a HPF
compiler to compile the code into an executable parallegam. From the Fortran 90
syntax perspective, HPF directives are simply commentsn she absence of an HPF
compiler a programmer can use a regular Fortran 90 compilesrnpile an HPF program
into a sequential executable program. In Figure 2.2, weepitesn HPF code fragment
intended to model a multigrid method, from Allen and Kenngtl§]. The TEMPLATE
directive declares a virtual processor array. Ri@GN directive specifies how an array is
aligned with a certain template. THRISTRIBUTEdirective specifies how a virtual pro-
cessor array or a data array is distributed over the memofiagparallel machine. This
specification is machine-independent. In the example pteden Figure 2.2, the template
T is block-distributed on both dimensions.

One core property of HPF programs is that many performanteatrdecisions are
made by the HPF compilers. To overcome potential limitatiohHPF compilers, the HPF
standard was extended with directives that enable the asssrivey program properties
to a compiler. ThdNDEPENDENTdirective specifies that the following loop does not
carry data dependencies and therefore can be safely piaedteas shown in the example,
this directive can also be used for nested loops. NE&V directive is used to specify
variables that are replicated on each processor; in the@eathe loop induction variable
I is replicated. Due to the wide use of reductions, HPF enahkesiser to specify that a
variable is collecting the result of a reduction, using REDUCTIONdirective. HPF is
supported by several commercial compilers [35, 37, 38,839,135, 180].

From a productivity standpoint, HPF would be the ideal laaggifor scientific code

writers already proficient in Fortran. One of the often citbdwbacks of HPF was its
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REAL A(1023, 1023), B(1023,1023), APRI ME(511,511)
| HPF$ TEMPLATE T(1024, 1024)

IHPF$ ALIGN A(l,J) WTH T(I,J)

IHPF$ ALIGN B(1,J) WTH T(I,J)

| HPF$ APRIME(I,J) WTH T(2+1-1, 2%J-1)

| HPF$ DI STRI BUTE T( BLOCK, BLOCK)

I HPF$ | NDEPENDENT, NEWI)

DO J=2, 1022 ! Multigrid snmoothing (Red-Black)
I HPF$ | NDEPENDENT
DO | =MOD(J, 2), 1022, 2

A(l,J)=0.25+(A(I +1, J) +A(I +1, J) +A(l,J-1) &
+A(l, J+1) +B(1,J))

ENDDO

ENDDO

I HPF$ | NDEPENDENT, NEWI)

DO J=2, 510 ! Multigrid restriction
I HPF$ | NDEPENDENT
DO | =2, 510

APRINVE(1,J) = 0.05%(A(2%1-2,2+%J-2) + &
AxA(2%1-2, 2 J-1) +A(2%1-2, 2+ 0) + &
AxA(2%1 -1, 2¢0-2) + 4xA(2%1-1,2+0) + &
A(2x1, 2%3-2) +4xA(2x1,2xJ-1) + &
A(2%1, 2¢3))

ENDDO
ENDDO

I Multigrid convergence test
ERR = MAXVAL(ABS(A(:,:)-B(:,:)))

Figure 2.2: HPF multigrid method example [17].

inability to match MPI performance for a range of applicaio Recently, Chavarriat

al [49,50, 62, 63] showed that HPF codes using multipartitigna block-cyclic distribu-
tion, were able to match MPI performance for challengingdsweep applications such as
the NAS benchmarks BT and SP.

A series of communication optimization techniques weresttgyed for HPF: commu-
nication vectorization, communication coalescing, comioation aggregation, support for
accesses through indirection arrays, computation rejicg9—-13,108-118, 126, 127].

HPF is an implicit parallel language, while CAF uses explparallelism. In HPF a
programmer is dependent on the HPF compiler to achieve npesface, while in CAF the
user retains control over performance critical factordhysagdata distribution, communica-

tion and computation placement. CAF is more performancesgarent than HPF: in CAF
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a programmer knows that high costs are incurred by remotsaes (marked syntactically
using brackets) and synchronization.

When performing communication optimizations for CAF, weédto take into account
several factors. First, remote references are explicihendode, using the bracket nota-
tion; second, we have to observe the memory consistency Ipmgdeaying attention to
synchronization statements. When performing commumnatectorization and commu-
nication aggregation for CAF, we first determine regionsamfeewhich are dominated and
postdominated by synchronization statements. Finallychmag the location on the source
and destination process images RWTs or GETs is challenging; when we cannot do that,
we need to rely on either expressing communication at lagglevel through Fortran 90
array sections syntax, or to use active messages. Dotsé@kai$es textual barriers to
match communication endpoints between processes.

The vectorization algorithm we describe in chapter 10.4tsaccommunication to the
outermost possible level, and performs hoisting of commation using complex expres-
sions as indices. We use a simplified version of the inspextecutor model, and do not
optimize remote accesses when using indirection arraysssitded in Dagt al [65-67],
and Hanxledeet al[101,102,184]. The CAF codes that we targeted used a siexgtt of
indirection so the algorithm presented in chapter 10.4 d@suffice to optimize them.

The HPF library contains collective routines; also, sinfoe program formulation is
sequential, an implementation of the language would hasapport all Fortran95 intrinsic
functions that perform some operation on full arrays, siechuam, min, max, etc. In CAF
a user has to code explicitly which collective operation halte needs and specify the

appropriate arguments.

2.2.4 OpenMP

OpenMP [133] is an implicit parallel programming model, &a&sn directives, library sup-
port and environment variables, added to sequential lagegiauch as Fortran or C/C++.

OpenMP programs are a single thread — the master thread —aratiabut users can use
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parallel regions to start new threads — slave threads; a&ritlef a parallel regions control
returns to the master thread. Conceptually, OpenMP emgldgsk-and-join parallelism
model. By using @&OVP PARALLEL directive, a programmer specifies a region of code
that will be executed by all threads; the user can controhtimaber of threads by using
a library routine or an environment variable. Loop-leverkaharing is achieved by using
theOMP PARALLEL DOdirective, which shares the iterations of a loop among thst-ex
ing threads. To reduce the fork-and-join overhead, seyenalllel loops can be combined
in a single parallel region. OpenMP provides several me&sgrhronization: barriers,
critical sections, atomic updates at statement level, adé sections executed only by the
master thread. User can specify both private and sharedbkasi; global variables such
as COMMON or SAVE in Fortran of static variables in C are byaidf shared, while
stack variables in procedures called from parallel reg@amsprivate. OpenMP enables
programmers to indicated that certain lines in a loop cpwed to arithmetic reductions.

In Figure 2.3, we present a fragment from the STREAM benchifk84] expressed
using OpenMP. The example uses several loop-level pasatielonstructs, uniformly dis-
tributing the loop iterations among the executing threads.

OpenMP relies on users to to specify directives correcty.example, one can u§d/P
PARALLEL DO only if there are no loop-carried dependencies. OpenMPrpromers
can use the incremental parallelism approach, when onlyple®f loops at a time are
parallelized.

OpenMP is supported by a large number of commercial congpiterboth Fortran 90
and C/C++ implementations. The biggest drawback to OpersMiB lack of performance
on distributed shared memory platforms. Programmers dh@vé syntactic means to indi-
cate the affinity between data and particular threads, wieiatis to unnecessary commu-
nication at runtime. This affects even OpenMP performanmcbardware shared-memory
machines: a study by Dotsenko, Coaetal[74] showed that for NAS benchmarks such as
SP class C and MG class C, the OpenMP versions are competitiyeip to 9-16 proces-
sors, after which their efficiency degrades significantlyhwespect to the MPI and CAF
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I $OWP PARALLEL DO

DO 10 j =1,n
a(j) = 2.0d0 ! $OWP PARALLEL DO
b(j) = 0.5D0 DO40j =1,n
c(j) = 0.0D0 b(j) = scalar*c(j)
10 CONTI NUE 40 CONTI NUE

t = nmysecond() - t
b(n) = b(n) +t

t = mysecond()
1 $OMP PARALLEL DO

DO20j =1,n times(2,k) = t!$OW PARALLEL DO
a(j) = 0.5d0*a(j) t = nysecond()
20 CONTI NUE a(l) = a(1l) +t
t = mysecond() - t DO50j =1,n
c(j) = a(j) + b(j)
* --- MAIN LOOP --- 50 CONTI NUE

scal ar = 0.5d0*a(1)
DO 70 k = 1, ntimes

t = mysecond() - t
c(n) =c(n) +t
times(3,k) =t
t = mysecond()
a(1) = a(1) +t
1 $OVP PARALLEL DO

t = mysecond()
b(1) = b(1l) +t

DO30j =1,n 1 $OVP PARALLEL DO
c(j) = a(j) DO60j =1,n
30 CONTI NUE a(j) = b(j) + scalarxc(j)
t = nysecond() - 60 CONTI NUE
c(n) =c(n) +t t = nysecond() - t
times(1,k) =t a(n) = a(n) +t
times(4,k) =t
t = mysecond() 70 CONTI NUE

c(l) =c(1) +t

Figure 2.3: STREAM benchmark kernel fragment expresseaitr&n+OpenMP.

versions of those benchmarks.

A recent trend is to use a hybrid OpenMP/MPI programming rhodeclusters of
SMPs, where one uses MPI to communicate among cluster nbodesslies on OpenMP
to achieve parallelism within one node.

OpenMP enables users to specify reductions operationsngith parallel region by
indicating the reduction type and the argument; a compiluld/then be responsible for
implementing the reduction. OpenMP does not have supppolrftadcast; to achieve the
same effect, a user would have to code an assignment to adsieable and relay on
the compiler to recognize this communication pattern anglement it efficiently. Also

OpenMP does not allow users to specify their own reducti@ratprs.
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225 ZPL

ZPL [47,70,177] is a high-level, implicit parallel programng language, in which pro-
grammers have a global view of computation. We will give arreiew of the language
by using a simple three-point stencil program presentedguarg 2.4. ZPL contains both
paral | el and private arrays. Parallel arrays are declared usggns The parallel
array A has the indices sets specified by the regddigR, [ 0. . n+1, 0..n+1]. The
last row of A is initialized to 1; the rest of the array is initialized to Bccesses to par-
allel arrays are performed exclusively by using speciarajpes. To perform the stencil
computation, theat operatof@ is used; this operator shifts the values of the avkdyy
an offset vector called directionand specified using the keywodd r ect i on. In our
example, the stencil computation involves the east, naht and north-east neighboring
cells. Shift references could potentially induce commatan. The result of the stencil is
assigned to the parallel arr@enp. Next, the program computes the difference between
the values ofA and Tenp by using the sum reduction operatex< applied to the par-
allel arrayA- Tenp; ZPL supports reductions for others operators such as pliadtion,
maximum and minimum. Notice that the index set for thepeat loop is specified by
using the regiorR. Another operator for parallel arrays is thEmmapoperator, which en-
ables a programmer to specify data movement between panabgs using patterns more
complicated than the shift operator.

A core feature of ZPL is its transparent performance modeywn aswhat-you-see-
is-what-gefWYSYWIG). A programmer is always aware of the places in theree code
that can trigger communication events. For example, a spdtator will probably induce
communication with certain neighbors of a processor. Thece operator leads to a lo-
cal reduction per processor and then to log-cost commuaichetween processors. The
remap operators causes potentially all-to-all commuignatvhich is expensive.

An open-source ZPL compiler was developed at the Washindtoversity. The com-
piler perform source-to-source translation from ZPL to Gwaalls to a runtime library;
it can use the MPI, PVM [181] or SHMEM [61, 174] libraries aswmmunication medium.



28

programthree_pt_stenci
config var

n :integer = 256
region

R=1[1..n, 1..n];

BigR = [0..n+1, 0..n+1];
direction

east=[ 0, -1];

nw=[-1, 1];

ne = [-1, 1];
var

A, Tenp: [BigR] double
const ant

epsilon: double = 0.00001

procedure three_pt_stenci
var

nr_iters : integer

err : doubl e
begi n

[ Bi gR] A= 0;

[south of R A:=1

nr_iters := 0

[Rl repeat

nr_iters += 1;
Tenmp : = (A@ast + A@w + A@e)/ 3. 0;
err := +<<abs(A-Tenp)
until err <= epsilon
witeln(‘‘Iteration performed: %\n' ' :nr_iters);
end

Figure 2.4: Parallel 3-point stencil program expressedih.Z

The ZPL compiler is responsible for mapping a parallel atmathe set of available pro-
cessors; private scalars and arrays are replicated an@degistent. Recent extensions to
ZPL [71] enable the declaration of user-defined data digiobs, improving the expres-
siveness of ZPL.

A study performed by Chamberlaet al [48] compares a ZPL version of MG, for
classes B (siz&56%) and C (size512%), with corresponding version written in MPI, HPF
and CAF. ZPL is able to match the performance of MPI on archutes such as a Linux
cluster with Myrinet interconnect, up to 128 processors, asun Enterprise, up to 8 pro-
cessors; ZPL is slightly outperformed by the MPI one on a kioluster with Ethernet,
on an IBM SP machine, and on an SGI Origin. On a Cray T3E, hoiéwe ZPL version

significantly outperforms MPI, up to 256 processors, duentgao the ZPL compiler’s
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ability to harness the SHMEM [61, 174] library, leading to ma@fficient communication
than that of MPI. The authors speculate that generating fayd@HMEM on SGI and the
IBM SP would enable the ZPL code to match the MPI performantestudy by Dietz
et al [68] showed that a ZPL version of NAS CG using MPI as commuioocasubstrate
was able to match the MPI performance for class C (si#¥00) on an IBM SP2 for 128
processors and on a LinuxBios/BProc Cluster for up to 1024gssors. For FT, the MPI
version outperforms the ZPL version on the IBM SP2 and LinosBProc Cluster due
mainly to lower performance of the transposition phase offRE PhD thesis of Dietz [70]
shows that a ZPL versions of IS class C (w#H keys and2!? buckets) achieves perfor-
mance comparable to that of the MPI version on a Cray T3E, yb6processors. We
couldn’t find documented performance results for ZPL versiof the SP, BT and LU NAS
benchmarks.

Chamberlairet al[36] present communication optimizations performed by & Z&6m-
piler: message vectorization, message pipelining andneght communicaiton removal.
Dietz et al [68] determine optimizations necessary for the implementaof a remapping
operator: using an inspector-executor schedule and séving multiple uses, compu-
tation/communication overlap, efficient schedule repnes@n, dead source/destination
reuse and RDMAPUT/CET. CAF can express array remapping at language level as a suc-
cession of remote assignments. In case of vectorizing acagsses with irregular ac-
cesses, we would compute the list of accessed array losadiot pass it using an active
message to a remote node. Finally, at the level of the CAF demywe determine when we
perform co-array to co-array accesses and use direct seceises, effectively achieving
zero-copy communication.

ZPL supports both full reductions and parallel prefix rechr, broadcast operations,
applied to whole arrays or parts of an array. These opematonthen translated by a ZPL
compiler. ZPL also supports user-defined reductions. Timapping operator can be used
to implement a collective exchange operation.

CAF is more performance transparent than ZPL: a CAF prograniras more control
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over the final performance of his or her code compared to a ZBgrammer, who needs

to rely on the ZPL compiler to generate efficient communaraind computation.

2.2.6 SISAL

SISAL (Streams and Iterations in a Single Assignment Laggug/9] is a general purpose
functional language. The order of execution of the progmdetermined by availability of
values for the operands of expressions rather than by stak&ring in the program source,
making SISAL a dataflow language. A compiler has the freedoschedule expression
evaluation in any order that satisfies data dependencies,tevschedule them in parallel.
SISAL supports calling C and Fortran routines to performcedfit local computaton. A
user can express parallelism in SISAL by using for loopspgating loops for which all
iterations are independent. To get parallel performancseahas to rely on the quality of
the SISAL compiler and runtime to achieve load balancingrmaadage the communication
overhead.

osc[41] is an optimizing SISAL compiler that generates codevector, sequential
and shared memory machines. osc transforms SISAL intodfodr C code, augmented
with calls into the osc runtime system. osc performs opt@tans such as update-in-place
intended to reduce the amount of copying, and splits the icad@arts that can be executed
independently in parallel. The execution model relies onaaed queue that contains slices
of work and on a server thread that distributes the slices tm¢ available processors.
SISAL achieved comparable performace to hand tunded codglsawed memory machines
for a series of benchmarks: for the Abingdon Cross imagegssing benchmark [5] and
for several Livermore Loops [40].

Several efforts have been made to port SISAL to distributechory machinedsc[81]
is a prototype SISAL compiler for distributed and shared mgnsystems. fsc is derived
from the osc compiler, but modifies the code generation pteagse the Filaments library
as a runtime system. Filaments is a library supporting firaérgd threads and shared

memory on distributed memory systems. Using fine-grainattiseenables the implemen-
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tation of both recursive and loop-level parallelism, angatmits runtime load balancing.
An fsc-compiled SISAL version of matrix multiply achievedspeedup of 2.88 on 4 pro-
cessors, a Jacobi Iteration solver achieved 2.03 speeddpootessors, and a version of
adaptive quadrature achieved a speedup of 3.59 on 4 CPUSs.

D-OSC[86] extends osc to generate C code with calls to a messagampdirary.
D-OSC parallelize$ or loops; a master process determines slices of computattbdian
tributes them to be executed in parallel by slave proces$kaslice contains other parallel
loops, the slave executing it takes the role of the mastergg®and further distributes its
slices to other processors. D-OSC implements optimizasoich as replacing multidimen-
sional arrays with rectangular arrays, coalescing messgigected to the same processor,
and using computation replication to reduce the need fomsonication. These optimiza-
tions reduce the number of messages and communication edlumibenchmarks such as
selected Livermore and Purdue loops, matrix multiply, lbapl but no timing measure-
ments were provided.

Pandeet al [160] extended the osc compiler to work on distributed mgrmoeachines;
they proposed a threshold scheduling algorithm for the &I&&ks that trades off between
parallel speedup and necessary number of processors. Angjmmessage passing is
used to communicate the necessary values between praze3$a experiments showed
speedups of up to 10 on 33 processors for various Livermoyeslo

While SISAL codes showed good scalability on tightly codpshared memory sys-
tems, achieving similar results on large scale distributedhory systems remains an open
problem. Using CAF, users can get high-performance an@lsiti&f on both shared and
distributed memory, by retaining explicit control of datacdmposition and communica-

tion and computation placement.

2.2.7 NESL

NESL [2,28-32] is a data-parallel programming languagegifiinctional semantics de-

veloped at Carnegie Mellon. NESL offered two new key consepésted data parallelism,
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function sparse_nmvrul t (A x) =
let ids,vals = unzip(flatten(A));
newal s = {val sxg:vals;g in x->ids}
in {sun{row): rowin partition(newals, {#A:A})} $

% A sparse matrix and a vector %
function jacobi _|l oop(x,A b,i) =
if (i == 0) then x
el se |et
y = sparse_mvmul t (A Xx);
X ={x+b-y: xinx; binb; yiny},
in jacobi _|oop(x,Ab,i-1) $

function jacobi (A b,n) =
jacobi _| oop(dist(0.,#a),a,b,n);

A=1[[(0, 1.), (1, .2) I,
[(0, .2), (1, 1.), (2, .41,
[ (1, .4), (2, 1.)1];
b=[1,1.,1.];

% Run jacobi for steps iterations %
X = jacobi (A b, steps);

% Check how cl ose the answer is -- it should equal [1,1,1] %
sparse_mviul t (A, X) ;

Figure 2.5: A Jacobi solver fragment expressed in NESL [3].

which makes it suitable for expressing irregular algorighiand a language-based perfor-
mance model, enabling a programmer to calculate the worklandepth of a program,
metrics related to the program execution time. Functioaalantics enables functions to
be executed in parallel when there is no aliasing betwedmgibunction calls. NESL
enables these functions to spawn other parallel functidle.cAIESL also supports data
parallelism using its sequence concept: a one dimensiastalbdited array consisting of
data items or other sequences. NESL has a parallel ap@gdb-construct that operates in
parallel on the elements of a sequence. In Figure 2.5 we mrafeagment from a Jacobi
solver expressed in NESL, that execudé®ps iterations.

Although the performance model gives users an estimatesotiiming time of a NESL
program, issues such as data locality and interprocessancmication are completely un-
der a NESL compiler’s control. In CAF, a programmer retaioatml over such perfor-

mance critical decisions.
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inline double[] onestep(double[] B) {
A=wth (. <x<.)
nmodarray(B, x, 0.25+(B[x+[1,0]]
+ B[x-[1,0]]
+ B[ x+[0, 1] ]
+ B[x-[0,1]11) );
return(A);
}

inline double[] relax(double[] A, int steps) {
for (k=0; k<steps; k++) {
A = onestep(A);

return(A);

}

int main () {
A=wth( . <=x <=.)
genarray([ Sl ZE1, SIZE2], 0.0d);

A

nodarray(A, [0, 1], 500.0d);

A

relax( A LOOP);

z with( Oxshape(A) <= x < shape(A))

fold(+, A[x]);
printf("% 10g\n", z);

return(0);

}

Figure 2.6: Fragment of a Jacobi solver written in SAC [169]

2.2.8 Single Assignment C (SAC)

Single Assignment C (SAC) [170,171] is a functional patgdlegramming language based
on ANSI C. It supports multidimensional C arrays, array @mies query operators, and it
contains the operatan t h- | oop, which can be used for array creation, operations that
modify array elements, or to fold array elements into onei&alsing binary operators.
In Figure 2.6 we present a Jacobi relaxation solver writteBAC that uses a five point
stencil.

Performance-critical decisions for SAC programs, suchngsprocessor communica-
tion, are left at the compiler’s discretion, as opposed td~-@fograms, where communi-
cation is syntactically marked. SAC is implemented as of thiiting on shared-memory

systems only, while our CAF compiler works on a wide rangeystems. Performance
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studies [48, 92, 93] showed that while SAC displayed goodirsgathey suffered from
scalar performance problems compared to their Fortran diategoarts for NAS FT, for
which it was slower by a factor of 2.8x, and is within 20% frone tserial performance of

NAS MG for class A (size563).

2.2.9 The HPCS Languages

As part of the DARPA High Productivity Computing Systems E8) [1] effort to real-

ize efficient parallel architectures and productive prograng models, several vendors
proposed new language-based parallel programming modal iGtroduced the Chapel
language [59], IBM proposed the X10 language [120], and Sasigthed the Fortress lan-
guage [16]. While these languages have generated signiticammercial and academic
interest, as of the writing of this document they only havat@iype implementations, and

published performance results on masivelly parallel systare not available yet.

2.3 Implementations of Co-Array Fortran

Before our work, the only available implementation of the &wvay Fortran language was
the one provided by Cray [173], only on Cray X1 and Cray T3Emnaes. It used the native
Fortran 90 vectorizing compiler to perform transformasieuch as communication vector-
ization and strip-mining, streaming remote data into lecahputation and making efficient
use of the vector processing capabilities of the machines.cOmpiler is multiplatform,
which should help broaden the acceptance of the CAF modeltudydy Chamberlain
et al [48] showcased the capability of CAF of delivering parapefformance superior to
that of MPI on hardware shared memory Cray platforms. We shdhis thesis that CAF
can match or exceed MPI performance on a range of archies;thoth cluster and shared
memory. To achieve performance portability for CAF, essgmptimizations are proce-
dure splitting, communication vectorization, communimatpacking and communication
aggregation, and synchronization strength reduction. ®We mot portecaf ¢ to Cray

platforms yet.
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Wallcraft has developed a translator [192] from Co-Arraytfam to OpenMP, which
works only for a subset of CAF and targets shared-memoryiteatbres. Wallcraft per-
formed a study of the CAF potential compared to MPI for the Ahenchmark [191],
showing that CAF can deliver good latency on hardware sharechory architectures.

Eleftheriouet alimplemented a co-array style C++ library for the Blue Genadper-
computer, rather than as a language, for the purpose of papidtyping and deployment.
Two threads are defined for each process image, one perigtheriocal computation, the
other one servicing communication requests. We believeahibrary-based implemen-
tation, while rapid to develop and useful for performancéepbal evaluation, lacks the
automatic optimizations that a compiler-based languag#ementation can offercaf ¢
is not implemented on Blue Gene/L at the moment; as of thiingri the ARMCI and
GASNet communication libraries are emerging on this platfo

Dotsenko [72] proposed, implemented and evaluated selargliage extensions for
CAF. Co-functions, which enable computation shipping,@ify the writing of parallel
search operations and enabled a CAF version of the RandagsAdmenchmark to out-
perform the MPI implementation. Co-spaces, textual besréend single-value variables
enabled an automatic implementation of synchronizatioength reduction, which con-
verts barriers into notify-wait synchronization. Finaltpultiversion variables extend the
CAF language with two-sided communication and yieldedgrenfince comparable to that

of hand-coded versions for NAS SP and the Sweep3D benchmark.

2.4 Performance Analysis of Parallel Programs

There are many approaches to analyzing the scalabilityraflphprograms. We can sep-
arate the analysis problem into several subproblewoguiringthe performance datana-
lyzingit andpresentingt in a form useful to application developers. Our automstialing
analysis based on expectations collects performance datamodified, fully-optimized
binaries using sampling-based callstack profiling impleteé bycspr of , independent

of the parallel programming model. Next, it perform a saglamalysis after the program
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execution during which associates scalability informatiath calling context tree nodes.
Finally, it useshpcvi ewer to display this information to an application developer.

Vampir [147], MPE and Jumpshot [197,199], MPICL [196] andd@raph [103, 104]
are toolsets that perform tracing of MPI calls; they userumaented versions of the MPI
library. They build and display time-space diagrams of thencunication activity. Such
tools enable users to visually determine inefficient comication patterns and map them
back to source code. They are complementary to the calk-gtadiling analysis and vi-
sualization provided bgspr of , the source correlation module ahgcvi ewer . The
trace size collected by such tools is proportional to the memof communication calls,
while forcspr of the performance data size is proportional to the size ofalidree. Our
scaling analysis method is also able to determine scaleffjcrencies due to non-scaling
computation, and attributes scaling impediments to alesad the calling context trees.

The Pablo performance analysis environment [166] recardsaaalyzes user specified
events. It collects event traces, event counters, and titeevals. It requires instrumenta-
tion of the source code to insert calls to the data tracingip this is achieved through
means of a graphical interface. Pablo incorporates ses&edegies to control the amount
of trace data. First, it monitors the frequency of eventd,iathe frequency of an event ex-
ceeds a threshold, then it records only the event count,diwt trace of the event. Second,
it performs dynamic statistical clustering of trace datar @nalysis strategy works on un-
modified optimized binaries, and the user control the peréosrce data size by controlling
the sampling frequencey.

OMPtrace [46] is a trace-based system used for profiling of diides. It performs
binary instrumentation of calls into the OpenMP runtimed @an collect metrics from
hardware counters to measure events such as cycles, casbespfioating point instruc-
tions and memory loads. OMPtrace also has the ability tecbliser-specified events.
Traces are then analyzed and displayed by Paraver [162]eracas instruct Paraver to
present both raw and user-defined metrics. We wsgar of to profile MPI, CAF and

UPC programs, and we have no experience with usggr of to analyze OpenMP pro-
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grams; however, our method should apply to analyze thergcafi SPMD-style OpenMP
programs. Our infrastructure also supports the measureafiarser-defined events, en-
abling scaling analysis for them as well.

Falcon [98] is a trace-based online parallel program stgesystem. Users define “sen-
sors” that are application specific and rely on an instrustgor tool to incorporate them
into the executable program. At runtime, trace informatofiected by these sensors is
sent to a central server and analyzed; as a result of thigsaséthe system or a user can rec-
ommend then enforce changes in the program (such as chaagimgderlying algorithm
or replacing global computations with less precise locahgotations). In this respect it
represents also an infrastructure for adaptive improvémeparallel programs. Active
Harmony [55, 183, 185] is a software architecture that sugputomated runtime tuning
of applications. Applications export a set of tuning partargeto the system; an adaptation
server would use a search-based strategy to select thesataoheters that yields the best
results, i.e. running time or memory usage. Our method parfmst-mortem analysis of
program scaling analysis, but its results can be used astovetiprove program perfor-
mance. We present in this thesis its applicability to strecajing analysis, but our method
could be applied to analyze scaling with respect to any parars, such as input size, and
could be used to evaluate for example the benefits of usirigreift scalar and parallel
algorithms. Also, a steering-based system could use ourade¢b analyze online the ben-
efits of changing aspects of the program execution. By noimgadny prior assumptions
regarding the lack of scaling causes, our method can be os#iddover potential scaling
parameters, acting as a complement to such online perf@ertaning systems.

Vetter [186] describes an assisted learning based syst&narialyzes MPI traces and
automatically classifies communication inefficienciesdzhon the duration of such com-
munication operations as blocking and nonblocking sendive. Our analysis method is
generally applicable, without looking for particular ifiefent performance patterns. We
have not explored using learning strategies to analyzedhenmance data; when analyz-

ing large programs, with numerous subroutine exhibitingots degrees of scaling loss,
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we believe that learning and data minining strategies nhghtecessary to point a user to
scaling hotspots.

Wu et al[197] present a strategy of performing trace-based arsabfsmultithreaded
MPI implementations running on SMP clusters. A challengéoisccount for thread
scheduling within an SMP nodes. Their system infers inlee@ords from tracing events;
this is then used to generate multiple views such as thrdadtawiew, processor activity
view, and thread-processor view, which tracks thread sdivegdamong different proces-
sors on the same node. Interval record data is then visdaligeg Jumpshot. While our
method is applicable independent of the programming maseldo not analyze thread
migration; all our experiments used processes bound teepsaes for the duration of the
program.

mpiP [188] uses an instrumented MPI library to record callsIPI primitives and per-
forms call-stack unwinding of user-selectable depth.eret al described a strategy [188]
they call rank-based correlation to evaluate the scatghnfi MPI communication prim-
itives. Their notion of scalability is different than ouran MPI communication routine
does not scale if its rank among other MPI calls performedhayapplication increases
significantly when the number of processors increases. (Becs pr of collects profile
data for the whole application automatically, we can corapassociate and display scala-
bility information for all the calling context tree nodegtnust with those associated with
MPI calls. Moreover, we can descend inside MPI calls, andyaeaf their implementa-
tion shows lack of scaling. An important advantage of ourhmdtis that it gives a user
guantitativeinformation regarding the lack of scaling, while the rardrelation method
yields onlyqualitativeinformation. The overhead of mpiP is proportional to the benof
MPI calls, while the overhead afspr of is proportional to the sampling frequency.

PHOTON MPI [187] uses an instrumented MPI profiling layer anchodified MPI
library to implement communication sampling: only somele# MPI blocking and non-
blocking communication events are considered accordimgéof multiple sample strate-

gies. The data gathered can be analyzed at runtime in thémpgadéiyer and only summary
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information needs to be kept around and later written to aTiles approach reduces dra-
matically the size of trace files and also reduces and catnel profiling overhead. How-
ever, at the moment this approach does not uses callstamtmaftion for data analysis.
Our scaling analysis method does not generate a statiskasslification of communication
without communication library instrumentation. Howewviire calling context trees for a
particular parallel execution could be used to present &assify the communication calls
based on their cost, rather than their size. We haven’t eeglprogram characterization
based on CCTs.

Quartz [20] aims to determine the causes for loss of paistitdior applications running
on a multiprocessors system. Quartz can detect causes silmddambalance, contention
on synchronization objects, excessive time spent in sgaids of a code. The main metric
of Quartz is normalized processor time, defined as processerdivided by concurrent
parallelism. Quartz works by periodically checkpointimgnhemory the number of busy
processors and the state of each processor, and using ateéeldicocessor to analyze this
data. Quartz displays the costs it found in a top-down fashixording to the call graph.
Our approach of usingspr of enables profiling of both shared-memory and distributed
memory applications, without dedicated processors; opidtmvn and bottom-up views
enable a user to determine the cost of spin-waiting or concation and assign them to
nodes in the calltree. If an application exhibits systemkiad imbalance, synchroniza-
tion objects contention, or serialization, then our methaadild pinpoint their effects on
scaling. However, if the goal is analyzing parallel perfamoe problems based on a single
parallel run, then we could use the CCTs collected on differ®des to determine load
imbalance by employing the expectation of equal executioeg for the CCT nodes of the
two performance profiles.

Paradyn [139] is a parallel performance analysis infrastme that relies on dynamic
instrumentation of binaries. Since instrumented prograrnspexhibit significant execution
time overheads, to make this analysis method feasible fa-fanning parallel programs

Paradyn needs to be parsimonious with which program segnaeatinstrumented. The
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approach is to use a performance problem search strategeritify apriori known inef-
ficiency causes, which program parts lead to loss of perfoc@aand at which point in
the program execution. The analysis results are used taumstt only those program
parts, rather then the whole program. Our scaling analysthod doesn’'t make any as-
sumption about the scalability impdiments, identifyingredn-scaling calling context tree
nodes. Such a method could be a complement to Paradyn, lowdigtg causes of lack of
scaling. Our performance data collection is extremely ieffic compared to using instru-
mentation of binaries; however, at the moment we do not ebecherformance data from
the final calling context tree, whereas after Paradyn woelérthine that a program part
performs well, it would ignore it in further analysis.

KOJAK [143] is a software system aiming to automaticallyad¢tcommunication bot-
tlenecks. It works with C, C++, and Fortran source code, far MPI, OpenMP and
SHMEM programming models. The approach requires instraatiem of the application.
The source code is processed by OPARI [140, 142] which imstnis OpenMP constructs
and generates calls to the POMP [141] API. Functions candieuimented at source level
using TAU [172] or at binary level using DPCL [69]. MPI calleeainstrumented using the
PMPI library [137,138]. The performance traces are producgng the EPILOG [194]
library. The resulting traces can be analyzed by the EXPERb] analyzer, which at-
tempts to determine patterns that correspond to known ansities, and are then dislayed
using the EXPERT presenter. Additionally, the EPILOG tsacan be converted to VAM-
PIR format and visualized with the VAMPIR event trace analysol. The execution time
overhead is proportional to the number of instrumentedtians called and can lead to
large output trace sizes. Our method has a controlable eadrlby setting the sampling
frequency, and it works on unmodified, fully optimized biear being thus easier to use.
Our scaling analysis is also independent of the programmmadel. EXPERT looks for
several performance problems categories, which might be mseful for an application
developer, while our method determines CCT nodes that gxpolor scaling, and then

relies on the user to identify and address the source of gilanggroblems.
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Chapter 3

Background

We have introduced the Co-array Fortran programming modélhapter 1. This chap-
ter describes refinements to CAF aimed towards writing lpgiiermance, scalable and

performance portable codes, and the parallel benchmaeksinghis thesis.

3.1 Refinements to the CAF Programming Model

Our previous studies [56, 73] identified a few weaknesseb@btiginal CAF language
specification that reduce the performance of CAF codes aqbged extensions to CAF to
avoid these sources of performance degradation. Firsoripmal CAF specification [156]
requires programs to have implicit memory fences beforeadtant each procedure call to
ensure that the state of memory is consistent before andesfth procedure invocation.
This guarantees that each array accessed within a suleastin consistent state upon
entry and exit from the subroutine. In many cases, an invgkededure does not access
co-array data at all or accesses only co-array data thatrades/erlap with co-array data
accessed by the caller. As a consequence, it is not possibieetlap communication with
a procedure’s computation with memory fences around thegohare’s call sites.

Second, CAF’s original team-based synchronization reguising collective synchro-
nization even in cases when it is not necessary. In [56], wpgse augmenting CAF with
unidirectional, point-to-point synchronization primiis:sync _not i f y andsync_wai t .
sync_noti fy(q) sends a notify to process imaggthis notification is guaranteed to be
seen by image only after all communication events previously issued gy ttbtifier to
imageq have been completedync _wai t (p) blocks its caller until it receives a match-

ing notification message from the process impg€ommunication events for CAF remote
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data accesses are blocking. While it is possible to exptmtiiocking communication in
some cases, automatically replacing blocking commurminatiith its non-blocking coun-
terpart and overlapping communication with computatiaquiees sophisticated compiler
analysis. To enable savvy application developers to opetenmunication and computa-
tion in cases where compiler analysis cannot do so autoafigfid is useful for CAF to
provide a user-level mechanism for exploiting non-blogkaeommunication. To address
that, we proposed a small set of primitives that enable aegipiin developers to delay the
completion of communication events, presented in moreldetsection 5.5.

Collective communication calls are important buildingdie for many parallel algo-
rithms [91], so supporting them efficiently in CAF codes isgmount. There are several

alternatives:

1. Users must write their own reductions: this leads to appibns that are performance

portable.

2. CAF should be extended with collective operations asuagg primitives. While
a recent revision of the CAF standard [154] proposes a sraalbfscollective op-
erations, we believe that CAF users should be able to exp@splex collective
operations such as all-to-all, scatter-gather, and rezhgwith both traditional op-
erators —sum, product, max, min — and user-defined opemati@AF would be

then extended with the corresponding primitives.

3. Collective operations should be provided as part of taedsrd library, and let the
vendors be responsible for the most efficient implemematio a certain platform.
This alternative is also pragmatic, but in long term we migt@fer to have a CAF
compiler analyze the collective operations and perhapsag them; this might be

more difficult with collectives implemented as library call

Algorithms for efficient collective operations use diffat@pproaches for different ma-
chines and different interconnects; if sophisticated cidus are part of the language or of

the standard library, then a CAF compiler could select thr@priate collective operation



43

implementation for the target architecture at build time part of a autotuning step. In
Chapter 11 | present and evaluate a set of collective opasagxtensions to CAF and an

implementation strategy based on MPI.

3.2 Benchmarks
3.2.1 The NAS Parallel Benchmarks

The NAS parallel benchmarks [24] are widely used to evaltiegerformance of parallel
programming models. In this thesis | used several of themBSPMG, CG, and LU.

NAS SP and BT. As described in a NASA Ames technical report [24], the NAS
benchmarks BT and SP are two simulated CFD applicationsstilaéé systems of equa-
tions resulting from an approximately factored implicitiféadifference discretization of
three-dimensional Navier-Stokes equations. The prindiiii@rence between the codes is
that BT solves block-tridiagonal systems of 5x5 blocks, reas SP solves scalar penta-
diagonal systems resulting from full diagonalization af #pproximately factored scheme.

Both SP and BT consist of an initialization phase followediteyative computations
over time steps. Each time step first calculates boundarglitons, then calculates the
right hand sides of the equations. Next, it solves bandesyssin three computationally
intensive bi-directional sweeps along each of the x, y, adotections. Finally, it updates
flow variables. Each time step requires loosely-synchrermmmmunication before the
boundary computation, and employs tightly-coupled comication during the forward
and backward line sweeps along each dimension.

Because of the line sweeps along each of the spatial dimes)diaditional block dis-
tributions in one or more dimensions would not yield goodaialism. For this reason, SP
and BT use a skewed block cyclic distribution called multipi@ning [24, 148]. A funda-
mental property of multipartitioning distributions is theasingle physical processor owns
all of the tiles that are neighbors of a particular procésdtes along any given direction.

Consequently, if a processor’s tiles need to shift datagwo tight neighbor along a particu-
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lar dimension, the processor needs to send values to onlytbaeprocessor. This property
is exploited to achieve scalable performance. With thigiBistion, each processor handles
several disjoint blocks in the data domain. Blocks are asslgo the processors so that
there is an even distribution of work for each directionaksw and each processor has a
block on which it can compute in each step of every sweep.dJsialtipartitioning yields
full parallelism with even load balance while requiring yobarse-grain communication.

The MPI implementation of NAS BT and SP attempts to hide comication la-
tency by overlapping communication with computation, gsmon-blocking communica-
tion primitives. For example, in the forward sweep, exceptthe last tile, non-blocking
sends are initiated to update the ghost region on its neighbext tile. Afterwards, each
process advances to its own next tile, posts a non-blocldogive, performs some local
computation, then waits for the completion of both its ndocking send and receive. The
same pattern is present in the backward sweep.

NAS MG. The MG multigrid benchmark computes an approximate satutmthe
discrete Poisson problem using four iterations of the eyaultigrid algorithm on a x
n x n grid with periodic boundary conditions [24].

In the NAS MG benchmark, for each level of the grid, there ameqalic updates of the
border region of a three-dimensional rectangular dataweltrom neighboring processors
in each of six spatial directions. The MPI implementatioesi®ur buffers, two for receiv-
ing and two for sending data. For each of the three spatia, aw® messages (except for
the corner cases) are sent using blocking MPI send to updgateorder regions on the left
and right neighbors.

NAS CG. In the NAS CG parallel benchmark, a conjugate gradient ntethaised to
compute an approximation to the smallest eigenvalue ofge)aparse, symmetric posi-
tive definite matrix [24]. This kernel is typical of unstruceéd grid computations in that it
tests irregular long distance communication and emplogssgpmatrix vector multiplica-
tion. The irregular communication requirement of this benark is a challenge for most

systems.
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On each iteration of loops involving communication, the M@ision initiates a non-
blocking receive to wait for data from the processor spethier educe_exch_proc(i),
followed by an MPI send to the same processor. After the sedyrocess waits until its
MPI receive completes. Thus, there is no overlap of comnatiwic and computation.

NAS LU. The NAS LU parallel benchmark solves the 3D Navier-Stokasé&qgn as
do SP and BT. LU implements the solution by using a Succe»reg-Relaxation (SSOR)
algorithm which splits the operator of the Navier-Stokesagtpn into a product of lower-
triangular and upper-triangular matrices (see [24] and])]84The algorithm solves five
coupled nonlinear partial differential equations on a 3@idally structured grid using an
implicit pseudo-time marching scheme. It is a challengipgli@ation to parallelize ef-
fectively due to the potential for generating many small sages between processors.
Computationally, the application is structured by compgithe elements of the triangular
matrices in the subroutingsacl d andj acu respectively. The next step is to solve the
lower and upper triangular systems, using subroutméss andbut s. After these steps,
the variables are updated, a new right-hand side is com@utédhe process repeats in-
side a time-step loop. The MPI code requires a power-of-tulver of processors. The
problem is partitioned on processors by repeatedly haltheggrid in the dimensions x
and y, alternately, until all power-of-two processors asigned. This results in vertical
pencil-like grid partitions on processors.

For each z plane, the computations proceeds as a sweepgstaitih one corner in a z
plane to the opposite corner of the same z-plane; the comtnpuia structured as a wave-
front. The communication of partition boundaries occutsrahe computation is complete
on all diagonals that contact an adjacent partition. Thistha potential of generating a

relatively large number of small messages of 5 words each.

3.2.2 LBMHD

LBMHD [157] simulates a charged fluid moving in a magneticdiaking a Lattice Boltz-

mann formulation of the magnetohydrodynamics equatiohs.bBenchmark performs sim-
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ulations for a 2D spatial grid, which is coupled to an octagj@treaming lattice and block
distributed over a 2D processor grid. The simulation caas$ a sequence of collision
and stream steps. A collision step performs computatiop onllocal data. A stream step
requires both contiguous and strided communication betyeacessors for grid points at

the boundaries of each block, and third degree polynomaluetion.
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Chapter 4

A Source-to-source Compiler for Co-array Fortran

We designed theaf ¢ compiler for Co-array Fortran with the major goals of beiogtpble
and delivering high-performance on many platforms. Igeallprogrammer would write a
CAF program once in a natural style andf ¢ would adapt it for high performance on the
target platform of choice.

To achieve this goal¢caf ¢ performs source-to-source transformation of CAF code
into Fortran 95 code augmented with communication oparatiddy employing source-
to-source translatiom;af ¢ aims to leverage the best Fortran 95 compiler available on
the target platform to optimize local computation. We chtusgenerate Fortran 95 code
rather than C code because for scientific programs Fortrazo@tpilers tend to generate
more efficient code than C compilers, on equivalent codes. cBmmunicationcaf c
typically generates calls to one-sided communicatioralpprimitives, such as ARMCI or
GASNet; however. For shared memory syste@atc can also generate code that employs
load and store operations for communicationaf ¢ is based on ®eEN64/sL [159], a
version of the @EN64 [158] compiler infrastructure that we modified to supsmtirce-
to-source transformation of Fortran 95 and CAF. This chapgéscribes joint work with

Yuri Dotsenko.

4.1 Memory Management

To support efficient access to remote co-array data on thadesd range of platforms,
memory for co-arrays must be managed by the communicatibstise; typically, this
memory is managed separately from memory managed conweaflyidoy a Fortran 95

compiler’s runtime system. Currently, co-array memoryliscated and managed by un-
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derlying one-sided communication libraries such as ARM@I &ASNet, for the sake of
communication efficiency. For ARMCI, on cluster systemsdmRDMA capabilities, co-
arrays are allocated in memory that is registered and pinmkith enables data transfers
to be performed directly using the DMA engine of the NIC. FoASNNet, the allocated
memory is used with an efficient protocol named Firehosé,ridgaster with the NIC and
pins the memory pages actually used in communication.

caf ¢ has to manage memory for static co-arrays, such as SAVE andMGON, and

for dynamic co-arrays, such as ALLOCATABLE.

e The memory management strategy implementedddyc for SAVE and COMMON
co-arrays has three components. At compile tioesf, c generates procedure view
initializers, which are responsible for allocating thegeostorage and setting up the
co-array representation for local accesses. At link ticad,c collects all the initial-
izers and synthesizes a global startup procedure thattbalts. Finally, on program
launch, the global startup procedure is called and it per$ozo-array memory allo-

cation and initialization of co-array representation faedl access.

e For ALLOCATABLE co-arrays,caf ¢ transforms allocation statements into a call
to the runtime library that collectively allocates co-grrmemory and sets the co-
array views. On deallocationaf c issues a call to a collective routine that frees the

co-array storage.

4.2 Local Co-Array Accesses

For CAF programs to perform well, access to local co-arrap daust be efficient. Since
co-arrays are not supported in Fortran 95, we need to ttensdterences to the local por-
tion of a co-array into valid Fortran 95 syntax. For perfonoe our generated code must
be amenable to back-end compiler optimization. In chapteeXlescribe several alter-
native representations for co-arrays. Our current styatetp use a Fortran 95 pointer to

access local co-array data. Becaused&gc runtime system must allocate co-array data
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outside the region of memory managed by the Fortran 95 rensiystem, we need the
ability to initialize and manipulate compiler-dependegpiresentations of Fortran 95 array
descriptors. A Fortran 95 pointer consists of an array datserknown as a dope vectors
We leverage code from the CHASM library [165] from Los Alanidational Laboratory

to enablecaf c to be usable with multiple compilers on a range of platforms.

4.3 Remote Co-Array Accesses

Co-array accesses to remote data must be converted int@af®&3%; however, this is not

straightforward because the remote memory may be in a difteddress space. Although
the CAF language provides shared-memory semantics, thettarchitecture may not; a
CAF compiler must perform transformations to bridge thip.g®n a hardware shared
memory platform, the transformation is relatively strafghward since references to re-
mote memory in CAF can be expressed as loads and stores &aldbeations; in previous

work [74] we explored alternative strategies for perforgn@@ommunication on hardware
shared memory systems. The situation is more complicateddster-based systems with
distributed memory.

To perform data movement on clustecsf ¢ must generate calls to a communication
library to access data on a remote node. Moreovaf,c must manage storage to tem-
porarily hold remote data needed for a computation. For @kanin the case of a read
reference of a co-array on another image, as shown in Figafa)4a temporary enp,
is allocated just prior to the statement to hold the valuéhefctoar r (: ) array section
from image p. Then, a call to get data from image p is issuedeauntime library. The
statement is rewritten as shown in Figure 4.1(b). The teargas deallocated immediately
after the statement. For a write to a remote image, such ame Figure 4.1(c), a tem-
poraryt enp is allocated prior to the remote write statement; the resfuthe evaluation of
the right-hand side is stored in the temporary; a call to amanication library is issued
to perform the write; and finally, the temporary is deallechtas shown in Figure 4.1(d).

When possible, the generated code avoids using unneedpdramy buffers. For example,
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allocate tenp ...

renote read call
arr(:) =tenmp(:) + ...

deal | ocate tenp ...

arr(:)=coarr(:)[p] + ...

(a) Remote read example (baf c-generated code

al l ocate tenp ...

temp(:)=...
renbte wite call

coarr(:)[pl, p2]= ...

deal | ocate tenp ...
(c) Remote write example (d)af c-generated code
coarr(:)[pl,p2]= coarr(:)

(e) Co-array to co-array communication

Figure 4.1: Examples of code generation for remote co-acagsses.

for an assignment performing a co-array to co-array comh s shown in Figure 4.1(e),
caf c generates code to move the data directly from the sourcéhiatdestination. In gen-
eral, caf ¢ generates blocking communication operations. However, dsectives [73]

enablecaf c to exploit non-blocking communication.

4.4 Argument Passing

CAF provides two methods of passing co-array déavalueandby co-array To pass
co-array data by value, one uses parantheses around aagoraference, as one would
do to pass by value in Fortran 95. To pass co-array data byrag;dhe programming

model requires that an interface always be used for thedccalibroutine. The shape of
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an argument co-array must be defined in the callee; this esabkhaping of co-array
arguments. Future work aims to support inference of thefaxte for functions defined in
the same file.

caf c replaces a co-array argument passed by co-array by two argemone is an
array argumentoArrayLocal corresponding to the local co-array data; the otheAr-
rayHandle corresponds to an opaque co-array handle. For accessesatalhta,coAr-
rayLocalis used; for communicatiowpoArrayHandles passed as an argument to runtime
calls. Future work is aimed at removing tt@ArrayHandleand have the runtime determine
the co-array memory based on the address of the co-arraydadathis would simplify
the interoperability ot af c-compiled CAF code with other SPMD parallel programming
models, such as MPI and UPC.

4.5 Synchronization

To support point-to-point synchronization in CA&y(nc_not i fy andsync_wai t ) us-
ing the ARMCI runtime library, we collaborated with the déygers of ARMCI on the
design of suitabler nti noti fy andar nti wai t primitives. ARMCI ensures that
if a blocking or non-blockind?UT to a remote process image is followed by a notify to
the same process image, then the destination image retke/estification after th&@UT
operation has completed. While ARMCI supports non-bloglkdommunication, on some
architectures, the implementation @f nci _not i fy itself is blocking. This limits the
overlap of communication and computation if a CAF programmetes a non-blocking
write to a remote co-array and notifies the destination me®omage immediately there-
after.

To supportsync_noti fy andsync_wai t in CAF using the GASNet library, while
ensuring the communication completion semantics, we impteed support for this primi-
tives in thecaf c runtime system. For a parallel execution of a CAF progranfamages,
caf c uses three arrays, as shown in Figure 9.1

The locatiorsent [ p] stores the number of notifisentto processop; r ecei ved[ p]



52

| ong sent[P];
| ong received|[ P];
| ong waited[P];
Figure 4.2: caf c-runtime data structure wused to implement the

sync_noti fy/sync_wai t primitives.

stores the notifies coungceivedby the current process image frgmwhile wai t ed[ p]
stores the number of notifiexpectedy the current processor from image Thecaf c
runtime collects a list of all outstanding communicatioguests. Upon the execution of a
sync_noti fy(p) by processoy, thecaf c runtime enforces the completion of all out-
standing requests to procesgpafter which it incrementsent [ p] ong and then copies
its contents into ecei ved[ q] on processap. Upon the execution ofaync_wai t ( Q)
by processop, the executing process image incremewdst ed[ ] , then spin waits until
recei ved[ q] exceedsvai t ed[ q] .

To maximize the overlap of communication and computatsymc_not i fy should
have a non-blocking implementation as well. In chapter 1kh@v that blocking notifies

constitute a scalability impediment.

4.6 Communication Libraries

For performance portability reasons, we chose to engioaéc on top of portable, one-
sided communication libraries. In Section 2.1.2 we pre=giite capabilities of one-sided
communication libraries such as ARMCI and GASNet. T& ¢ runtime can utilize

effectively either of the two communication libraries.

4.7 caf c Status

At the time of this writing,caf ¢ supports COMMON, SAVE, and ALLOCATABLE co-
arrays of primitive and user-defined types, passing of cayasrguments, co-arrays with

multiple co-dimensions, co-array communication usingyasections, the CAF synchro-
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nization primitives and most of the CAF intrinsic functioi$he following features of CAF
are currently not supported: triplets in co-dimensiongl parallel I/0. Ongoing work is
aimed at removing these limitationsaf ¢ compiles natively and runs on the following
architectures: Pentium clusters with Ethernet intercohi&anium?2 clusters with Myrinet
or Quadrics interconnect, Alpha clusters with Quadricsriecannect, SGI Origin 2000 and
SGI Altix 3000, Opteron clusters with Infiniband intercosheFuture work aims to port

caf c onto very large scale systems including BlueGene/L and &l



54

Chapter 5

Optimizing the Performance of CAF Programs

To harness the power of existing parallel machines, onesedchieve both scalar per-
formance and communication performance.

To achieve high scalar performance when employing sous®irce translation, we
need to generate local code amenable to optimization bykehdd-ortran compiler. Dur-
ing experiments witlcaf c-compiled codes, we refined the co-array representation for
local accesses and designed a transformation, procedlitéhgpnecessary to achieve
good local performance. In this chapter we describe praeesilitting, a transformation
necessary to achieve good scalar performance, then cofapdran 90 representations of
COMMON block and SAVE co-arrays on scalable shared-memaryipnocessors to find
the one that yields superior performance for local computadVe report our findings for
two NUMA SGI platforms (Altix 3000 and Origin 2000) and thewmrresponding compilers
(Intel and SGI MIPSPro Fortran compilers). An important finglis that no single Fortran
90 co-array representation and code generation strateffisythe best performance across
all architectures and Fortran 90 compilers.

To obtain communication performance, we need to increasermmication granular-
ity and overlap computation and communication. Commuiooatectorization in CAF
codes can be expressed at source level, using the Fortrane§5saction syntax. Another
optimization is communication packing, and we presentsd\aternatives for perform-
ing it. To achieve communication and computation overlap,use hints for issuing of
non-blocking communication.

An appealing characteristic of CAF is that a CAF compiler aatomatically tailor code

to a particular architecture and use whatever co-arrayesgmtations, local data access
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methods, and communication strategies are needed to idiflesbest performance.

5.1 Procedure Splitting

In early experiments comparing the performance of CAF @y compiled bycaf ¢
with the performance of Fortran+MPI versions of the sameymms, we observed that
loops accessing local co-array data in the CAF programs wféee significantly slower
than the corresponding loops in the Fortran+MPI code, elengh the source code for
the computational loops were identical. Consider the Yalhg lines that are common to
both the CAF and Fortran+MPI versions of thenput e_r hs subroutine of the NAS BT
benchmark. (NAS BT is described in Section 6.3.)

rhs(l,i,j,k,c) =rhs(l,i,j,k,c) + dxltxl » &
(u(1,i+1,j,k,c) - 2.0doxu(1,i,j,k,c) + &
u(l,i-1,j,k,c)) - &

tx2 + (u(2,i+1,j,k,c) - u(2,i-1,j,k ¢c))

In both the CAF and Fortran+MPI sourcesandr hs reside in a single COMMON block.
The CAF and Fortran+MPI versions of the program declaretidaihdata dimensions for
these variables, except that the CAF code adds a singlencerdion tau andr hs by ap-
pending a [ *] " to the end of its declaration. As described in Section d&f, c rewrites

the declarations of the andr hs co-arrays with co-array descriptors that use a deferred-
shape representation for co-array data. Referencesatwr hs are rewritten to use For-

tran 90 pointer notation as shown here:

rhs%tr(1,i,j,k,c) = rhso%tr(1,i,j,k,c) + dxltxl » &
(u%ptr(1,i+1,j,k,c) - 2.0dOxu%tr(1,i,j,k,c) + &
udptr(l,i-1,j,k,c)) - &

tx2 » (u%ptr(2,i+1,j,k,c) - udptr(2,i-1,j,k,c))

Our experiments showed that the performance differenceshserved between the
caf c-generated code and its Fortran+MPI counterpart resularhfppom the fact that the

Fortran 90 compilers we use to comptaf c’'s generated code conservatively assume
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that the pointers hs%ptr andu%pt r might alias one anothér. Overly conservative
assumptions about aliasing inhibit optimizations.

We addressed this performance problem by introducing amaattc, demand-driven
procedure-splitting transformation. We split each praredhat accesses SAVE or COM-
MON co-array variables into a pair of outer and inner proceduWe apply this transfor-
mation prior to any compilation of co-array features. Pgeodde in Figure 5.1 illustrates
the effect of the procedure-splitting transformation.

The outer procedure retains the same procedure interfabe asginal procedure. The
outer procedure’s body contains solely its data declaratian interface block describing
the inner procedure, and a call to the inner procedure. Timeriprocedure is created by
applying three changes to the original procedure. Fistigument list is extended to ac-
count for the SAVE and COMMON co-arrays that are now receagdrguments. Second,
explicit-shape co-array declarations are added for eadhianal co-array received as an
argument. Third, each reference to any SAVE or COMMON cayanow also available as
a dummy argument is replaced to use the dummy argument mensitead. In Figure 5.1,
this has the effect of rewriting the reference{0b0) inf with a reference te_ar g( 50)
inf _i nner.

After procedure splitting, the translation process for lempenting co-arrays, as de-
scribed in chapter 4, is performed. The net result aftettsiand translation is that within
the inner procedure, SAVE and COMMON co-arrays that are nandled as dummy
arguments are represented using explicit-shape arraysrrétan deferred-shape arrays.
Passing these co-arrays as arguments to the inner prodedaweid accessing SAVE and
COMMON co-arrays using Fortran 90 pointers has severalfiiend-irst, Fortran com-

pilers may assume that dummy arguments to a procedure ddia®ae another; thus,

*Compiling thecaf c-generated code for the Itanium?2 using Intélfsor t compiler (version 8.0) with
the-f no- al i as flag removed some of performance difference in computatiooas between the CAF
and Fortran+MPI codes.

tOur prototype currently supports procedure splitting dolysubroutines; splitting for functions will be

added soon.
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subroutine f(a,b)
real a(10)[*], b(100), c(200)][*]
save c

. = ¢(50) ...

end subroutine f

(a) Original procedure

subroutine f(a,b)
real a(10)[*], b(100), c(200)][*]
save c
interface
subroutine f_inner(a,b,c_arg)
real a[*], b, c_arg[*]
end subroutine f_inner
end interface
call f_inner(a,b,c)

end subroutine f

subroutine f_inner(a,b,c_arg)
real a(10)[*], b(100), c_arg(200)][*]
. = c_arg(50) ...

end subroutine f_inner

(b) Outer and inner procedures after splitting.

Figure 5.1: Procedure splitting transformation.

these co-arrays are no longer assumed to alias one anogieend; within the inner proce-
dure, the explicit-shape declarations for co-array dumrgyments retain explicit bounds
that are otherwise obscured when using the deferred-slegpesentation for co-arrays in
the generated code that was described in Section 4.2. Tirce local co-array data is
referenced in the inner procedure as an explicit-shapg,attia known to be contiguous,

whereas co-arrays referenced through Fortran 90 poinydestrided. Our experiments
also showed that knowing that data is contiguous improviéeare prefetching (as well as

write hinting in Compaq’s Fortran 90 compiler). The ovegiformance benefits of this
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transformation are evaluated in Section 6.1.

5.2 Representing Co-arrays for Efficient Local Computation

To achieve the best performance for CAF applications, ttitcal to support efficient com-
putation on co-array data. Becaws# ¢ uses source-to-source translation into Fortran 90,
this leads to the question of what is the best set of Fortraco®8tructs for representing
and referencing co-array data. There are two major facttestag the decision: (i) how
well a particular back-end Fortran 90 compiler optimizdtedent kinds of data references,
and (ii) hardware and operating system capabilities ofahget architecture.

Most Fortran compilers effectively optimize reference€OMMON block and SAVE
variables, but fall short optimizing the same computatitrewdata is accessed using Cray
or Fortran 90 pointers. The principal stumbling block isalanalysis in the presence of
pointers. COMMON block and SAVE variables as well as subneuformal arguments in
Fortran 90 cannot alias, while Cray and Fortran 90 pointars &/hen compiling a CAF
program,caf ¢ knows that in the absence of Fortran EQUIVALENCE statem@a$/-
MON block and SAVE co-arrays occupy non-overlapping regiohmemory; however,
this information is not conveyed to a back-end compileraf ¢ generates code to access
local co-array data through pointers. Conservative asiongpabout aliases cause back-
end compilers to forgo critical performance optimizatisash as software pipelining and
unroll-and-jam, among others. Some, but not all, Fortrac@@pilers have flags that en-
able users to specify that pointers do not alias, which cagliamate the effects of analysis
imprecision.

Besides the aliasing problem, using Fortran 90 pointersctess data can increase
register pressure and inhibit software prefetching. Thapshof a Fortran 90 pointer is
not known at compile time; therefore, bounds and stridesmareonstant and thus occupy
extra registers, increasing register pressure. Also a tdentms no knowledge whether
the memory pointed to by a Fortran 90 pointer is contiguowgrated, which complicates

generation of software prefetch instructions.
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type t1 subroutine foo(...)
real, pointer :: local(:,:) real a(10, 20)[ ]
end type t1l comon /ach/ a
type (t1) ca
. end subroutine foo
(a) Fortran 90 pointer representation. o _
(e) Original subroutine.

type t2
real :: local (10, 20) | subroutine-w apper
end type t2 subroutine foo(...)
type (t2), pointer :: ca I F90 pointer representation of

(b) Pointer to structure representation.
call foo_body(ca% ocal (1,1),...)

real :: adlocal (10, 20) end subroutine foo

pointer (aptr, alocal)

. . I subroutine-body
(c) Cray pointer representation.subrouti ne foo_body(al ocal, ...)

real :: alocal (10, 20)

real :: ca(10, 20)

common /cach/ ca end subroutine foo_body

(d) COMMON block representation. (f) Parameter representation.

Figure 5.2: Fortran 90 representations for co-array loatd.d

The hardware and the operating system impose extra cantstoa whether a particular
co-array representation is appropriate. For example, dmaged-memory system a co-
array should not be represented as a Fortran 90 COMMON vaiiiedd COMMON block
cannot be mapped into multiple process images. Below weisksitve possible Fortran 90

representations for the local part of a co-array variakl@ a(10,20)[*].

Fortran 90 pointer. Figure 5.2(a) shows the representation of co-array dataiesd by
caf c. At program launchg¢af c’s run-time system allocates memory to haldl x 20
array of double precision numbers and initializesd¢hés ocal field to point to it.

This approach enabled us to achieve performance roughbi égjthat of MPI on an
Itanium2 cluster with a Myrinet2000 interconnect using thel Fortran compiler v7.0
(using a “no-aliasing” compiler flag) to compiteaf c’s generated code [56]. Other com-
pilers do not optimize Fortran 90 pointers as effectivelptetial aliasing of Fortran 90
or Cray pointers inhibits some high-level loop transforimad in the HP Fortran compiler
for the Alpha architecture. The absence of a flag to signaHtheé\lpha Fortran compiler

that pointers don't alias forced us to explore alternativategies for representing and ref-
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erencing co-arrays. Similarly, on the SGI Origin 2000, the’BPro Fortran 90 compiler

does not optimize Fortran 90 pointer references effegtivel

Fortran 90 pointer to structure. In contrast to the Fortran 90 pointer representation
shown in Figure 5.2(a), thpointer-to-structureshown in Figure 5.2(b) conveys constant

array bounds and contiguity to the back-end compiler.

Cray pointer. Figure 5.2(c) shows how a Cray pointer can be used to refdrdeztocal
portion of a co-array. This representation has similar progs to the pointer-to-structure
representation. Though the Cray pointer is not a standantdaRd®0 construct, many For-

tran 90 compilers support it.

COMMON block. On the SGI Altix and Origin architectures, the local part ofa
array can be represented as a COMMON variable in each SPMi2gsomage (as shown
in Figure 5.2(d)) and mapped into remote images as symnugtécobjects using SHMEM
library primitives. References to local co-array data aqgressed as references to COM-
MON block variables. This code shape is the most amenabladk-bnd compiler op-
timizations and results in the best performance for locahmatation on COMMON and

SAVE co-array variables (see Section 5.3).

Subroutine parameter representation. To avoid pessimistic assumptions about alias-
ing, aprocedure splittingtechnique can be used. If one or more COMMON block or
SAVE co-arrays are accessed intensively within a procedheeprocedure can be split
into wrapper and body procedures (see Figures 5.2(e) arff))5.2he wrapper proce-
dure passes all (non-EQUIVALENCEd) COMMON block and SAVEaroays used in the
original subroutine to the body procedure as explicit-shaguments within the body
procedure, these variables are then referenced as rougjoments. This representation

enablescaf ¢ to pass bounds and contiguity information to the back-endpier. The

Fortran 90 argument passing styles are described in déteWkere [7].



61

procedure splitting technique proved effective for both P Alpha Fortran compiler and

the Intel Fortran compiler.

5.3 Evaluation of Representations for Local Accesses

Currently,caf ¢ generates code that uses Fortran 90 pointers for referémdesal co-
array data. To access remote co-array eleme@tc can either generate ARMCI calls
or initialize Fortran 90 pointers for fine-grain load/st@@mmunication. Initialization of
pointers to remote co-array data occurs immediately pa@tatements referencing non-
local data; pointer initialization is not yet automatigatioisted out of loops. To evalu-
ate the performance of alternate co-array representainpdscommunication strategies,
we hand-modified code generated &gf ¢ or hand-coded them. For instance, to eval-
uate the efficiency of using SHMEM instead of ARMCI for comnuation, we hand-
modifiedcaf c-generated code to usshnemput /shnmemget for both fine-grain and
coarse-grain accesses.

We used two NUMA platforms for our experiments: an SGI AltiG0® and an SGI
Origin 2000. We used the STREAM benchmark to determine the best co-eepagsen-
tation for local and remote accesses. To determine the $iigieaforming representation
for fine-grain remote accesses we studied the Random AcoesS@ark98 benchmarks.
To investigate the scalability of CAF codes with coarserg@mmunication, we show
results for the NPB benchmarks SP and MG.

The STREAM [134] benchmark is a simple synthetic benchmadgm@mm that mea-
sures sustainable memory bandwidth in MB/g’(bytes/s) and the corresponding compu-
tation rate for simple vector kernels. The top half of Figbrg shows vector kernels for

a Fortran 90 version of the benchmark. The size of each almayld exceed the capacity

SAltix 3000: 128 Itanium2 1.5GHz processors with 6MB L3 cached 128 GB RAM, running the
Linux64 OS with the 2.4.21 kernel and the 8.0 Intel compilers

Y0rigin 2000: 16 MIPS R12000 processors with 8MB L2 cache ah@B RAM, running IRIX 6.5 and
the MIPSpro Compilers version 7.3.1.3m
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of the last level of cache. The performance of compiled codéfe STREAM benchmark

also depends upon the quality of the code’s instructiorastre

DO J=1, N DO J=1, N DO J=1, N DO J=1, N

C(J) =A(J) B(J) =s*C(J) C(J) =A(J) +B(J) A(J) =B(J) +s*C(J)

END DO END DO END DO END DO

(a) Copy (b) Scale (c) Add (d) Triad

DO J=1, N DO J=1, N DO J=1, N DO J=1, N

C(J)=A(J)[p] B(J) =s*C(J) [ p] C(I)=A(I)[p]+B(I)[pP] A(JI)=B(J)[p]+s*C(JI)[Pp]
END DO END DO END DO END DO

(e) CAF Copy (f) CAF Scale (g) CAF Add (h) CAF Triad

Figure 5.3: The STREAM benchmark kernels (FO0 & CAF).

We designed two CAF versions of the STREAM benchmark: onedtuate the repre-
sentations for local co-array accesses, and a second taévdhe remote access code for
both fine-grain accesses and bulk communication. Tablergsepts STREAM bandwidth
measurements on the SGI Altix 3000 and the SGI Origin 2000qolas.

Evaluation of local co-array access performanceTo evaluate the performance of local
co-array accesses, we adapted the STREAM benchmark byridgcha B and C as co-
arrays and keeping the kernels from the top half of Figurarie&®t. We used the Fortran
90 version of STREAM with the arrays A, B and C in a COMMON blaka baseline for
comparison The results are shown in the local access pdredfable 5.1. The results for
the COMMON block representation are the same as the reduhe original Fortran 90.
The Fortran 90 pointer representation without the “nosatig” compiler flag yields only

30% of the best performance for local access; it is not alvpagsible to use no-aliasing

IOn an SGI Altix, we useoverridelinits -O8 -tpp2 -fnoali as forthe Intel 8.0 compiler.

On the Origin, we use64 - 3 for the MIPSpro compiler.
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flags because user programs might have aliasing unrelatedaay usage. On both archi-
tectures, the results show that the most efficient reprasentfor co-array local accesses
is as COMMON block variables. This representation enalblesmost effective optimiza-
tion by the back-end Fortran 90 compiler; however, it candexlonly for COMMON and
SAVE co-arrays; a different representation is necessarglfocatable co-arrays.
Evaluation of remote co-array access performanceWe evaluated the performance of
remote reads by modifying the STREAM kernels so that A,B&amr-arrays, and the ref-
erences on the right-hand side are all remote. The resudtdg is shown in the bottom
half of Figure 5.3. We also experimented with a bulk versionwhich the kernel loops
are written in Fortran 90 array section notation. The reguiésented in the Table 5.1 cor-
respond to the following code generation options (for batle-fjrain and bulk accesses):
the library-based communication with temporary buffermg#ARMCI calls, Fortran 90
pointers, Fortran 90 pointers with the initialization Het$ out of the kernel loops, library-
based communication using SHMEM primitives, Cray point€ray pointers with hoisted
initialization without the no-aliasing flag, Cray pointergth hoisted initialization, and a
vector of Fortran 90 pointers to remote data. The next resutesponds to a hybrid repre-
sentation: using the COMMON block representation for aayatocal accesses and Cray
pointers for remote accesses. The last result corresporais®@penMP implementation of
the STREAM benchmark coded in a similar style to the CAF wa1sj this is provided to
compare the CAF versions against an established shared imenegramming model.

The best performance for fine-grain remote accesses isvachi®/ the versions that
use Cray pointers or Fortran 90 pointers to access remogevddt the initialization of
the pointers hoisted outside loops. This shows that hgishitialization of pointers to
remote data is imperative for both Fortran 90 pointers aray @ointers. Using the vector
of Fortran 90 pointers representation uses a simpler giratehoist pointer initialization
that requires no analysis, yet achieves acceptable peafaren Using a function call per
each fine-grain access incurs a factor of 24 performancedagon on Altix and a factor

of five on the Origin.
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| | SGI Altix 3000 | SGI Origin 2000 |
‘ Program representation H Copy ‘ Scale ‘ Add ‘ Triad H Copy ‘ Scale ‘ Add ‘ Triad ‘
Fortran, COMMON block arrays 3284 | 3144 | 3628 | 3802 334 293 | 353 335
Local access, F90 pointer, w/o no-aliasing flag 1009 929 | 1332 | 1345 323 276 | 311 299
Local access, F90 pointer 3327 | 3128 | 3612 | 3804 323 277 | 312 298
Local access, F90 pointer to structure 3209 | 3107 | 3629 | 3824 334 293 | 354 335
Local access, Cray pointer 3254 | 3061 | 3567 | 3716 334 293 | 354 335
Local access, split procedure 3322 | 3158 | 3611 | 3808 334 288 | 354 332
Local access, vector of F90 pointers 3277 | 3106 | 3616 | 3802 319 288 | 312 302
Remote access, general strategy 33 32 24 24 11 11 8 8
Remote access bulk, general strategy 2392 | 1328 | 1163 | 1177 273 115 99 98
Remote access, F90 pointer 44 44 34 35 10 10 7 7
Remote access bulk, F90 pointer 1980 | 2286 | 1997 | 2004 138 153 | 182 188
Remote access, hoisted F90 pointer 1979 | 2290 | 2004 | 2010 294 268 | 293 282
Remote access, shmeget 104 102 e 77 72 70 57 56
Remote access, Cray pointer 71 69 60 60 26 26 19 19
Remote access bulk, Cray ptr 2313 | 2497 | 2078 | 2102 346 294 | 346 332
Remote access, hoisted Cray pointer, w/o no-aliasing fla@310 | 2231 | 2059 | 2066 286 255 | 283 275
Remote access, hoisted Cray pointer 2349 | 2233 | 2057 | 2073 346 295 | 347 332
Remote access, vector of F90 pointers 2280 | 2498 | 2073 | 2105 316 291 | 306 280
Remote access, hybrid representation 2417 | 2579 | 2049 | 2062 350 295 | 347 333
Remote access, OpenMP 2397 | 2307 | 2033 | 2052 312 301 | 317 287

Table 5.1: Bandwidth for STREAM in MB/s on the SGI Altix 300@dathe SGI Origin
2000.

For bulk access, the versions that use Fortran 90 pointe@ay pointers perform
better for the kernels Scale, Add and Triad than the generaian (1.5-2 times better on
an SGI Altix and 2.5-3 times better on an SGI Origin), whiclesibuffers for non-local
data. Copying into buffers degrades performance significéor these kernels. For Copy,
the general version does not use an intermediate bufféeadsit usesentpy to transfer
the data directly into th€ array and thus achieves high performance.

We implemented an OpenMP version of STREAM that performslaimemote data

accesses. On and SGI Altix, the OpenMP version deliverefbymeance similar to the
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CAF implementation for the Copy, Add, and Triad kernels, 806éb for the Scale kernel.
On an SGil Origin, the OpenMP version achieved 86-90% of timfopeance of the CAF
version.

In conclusion, for top performance on the Altix and Origimgibrms, we need dis-
tinct representations for co-array local and remote aesesor COMMON and SAVE
variables, local co-array data should reside in COMMON ksoar be represented as sub-
routine dummy arguments; for remote accessed,c should generate communication

code based on Cray pointers with hoisted initialization.

5.4 Strided vs. Contiguous Transfers

Itis well-known that transferring one large message irstdanany small messages in gen-
eral is much cheaper on loosely-coupled architecturesh Wi column-major layout of
co-arrays, one language-level communication event, ss&hia, 1: n) [ p] =b(j, 1: n),
might lead ton one-element transfers, which can be very costly. To oveecthns perfor-
mance hurdle, an effective solution is to pack strided datahe source, and unpack it
on the destination. For example, for a PUT of a strided cayasection, which is non-
contiguous in memory, it may be beneficial to pack the sedatiothe sender and unpack
it in the corresponding memory locations on the receiverer&€ltan be several levels in
the runtime environment where the data can be packed anctkegbao ensure efficient
transfers.

In the CAF program This approach requires some effort on the programmer’'sside
can preclude CAF compiler from optimizing code for tightdgupled architectures, such
as the Cray X1.

By the CAF compiler In a one-sided communication programming paradigm, a major
difficulty to pack / unpack data on this level is to transformeesided communication into
two-sided. For a PUT, the CAF compiler can easily generatkipg code, but it is difficult
to infer where in the program to insert the unpacking coddeaéceiving image unpacks

data correctly. Similar complications arise for GETSs. Ittike Messages [76] are supported
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on a target platformgaf ¢ could potentially generate packing code for the sourcega®c
and an unpacking code snippet to execute on the destination.

In the runtime library This is the most convenient level in the runtime environntent
perform packing / unpacking of strided communication. Atimzed runtime library can
use a cost model to decide if it is beneficial to pack data fonaesl transfer. It also knows
how to unpack data on the remote image, and it can take ady@ofehardware specific
features, e.g., RDMA transfers. The ARMCI library used by GAF compiler runtime
library already performs packing/unpacking of data for Mgt. However, we discovered
that it does not currently do packing for Quadrics. InsteegRIMCI relies on the Quadrics
driver support for strided transfers, which deliver poorfpenance.

On a Myrinet network, we determined that the ARMCI packimgacking of strided
transfers outperforms a strategy based solely on activeages. The explanation for this is
that for large messages ARMCI packs chunks of the trangadssthem to the destination,
where it executes unpacking code. By performing effectipelming of message chunks,
ARMCI overlaps packing, communication and unpacking féiedent chunks. An active-
message based solution will not benefit of this overlap and tbse in performance to
ARMCI.

5.5 Hints for Non-blocking Communication

Overlapping communication and computation is an importachnique for hiding inter-
connect latency as well as a means for tolerating asynchyetween communication part-
ners. However, as CAF was originally described [156], athomunication must complete
before each procedure call in a CAF program. In a study of mitini implementation of
caf c, we found that obeying this constraint and failing to overt@mmunication with
independent computation hurt performance [56].

Ideally, a CAF compiler could always determine when it ises@af overlap communi-
cation and computation and to generate code automatitatydbes so. However, it is not

always possible to determine at compile time whether a conication and a computation
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may legally be overlapped. For instance, if the computaéiod/or the communication
use indexed subscripts, making a conservative assumyitourt ghe values of indexed sub-
scripts may unnecessarily eliminate the possibility of ommication/computation overlap.
Also, without whole-program analysis in a CAF compiler,he presence of separate com-
pilation one cannot determine whether it is legal to ovedapimunication with a called
procedure.

To address this issue, we believe it is useful to provide ahai@em to enable knowl-
edgeable CAF programmers to provide hints as to when conuation may be overlapped
with computation. Such a mechanism serves two purposesaliiles overlap when con-
servative analysis would not, and it enables overlapahc-generated code today before
caf ¢ supports static analysis of potential communication/cotafon overlap. While ex-
posing the complexity of non-blocking communication torsse not ideal, we believe it is
pragmatic to offer a mechanism to avoid performance batks rather than forcing users
to settle for lower performance.

To support communication/computation overlap in code geed bycaf c, we im-
plemented support for three intrinsic procedures thatleraiogrammers to demarcate the
initiation and signal the completion of non-blocking PUT¥e use a pair of intrinsic calls
to instruct thecaf ¢ run-time system to treat all PUT operations initiated betmvihem as

non-blocking. We show this schematically below.
region_id = open_nb_put_region()
Put_stmt_1
Put_Strt _n
call close_nb_put_region(region_id)
In our current implementation of treaf ¢ runtime, only one non-blocking region may
be open at any particular point in a process image’s exatutiach PUT operation that

executes when a non-blocking region is open is associatddtiaér egi on_i d of the

open non-blocking region. It is a run-time error to close amgion other than the one
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currently open. Eventually, each non-blocking regionanéd must be completed with the

call shown below.

call conplete_nb_put_region(region_id)

The completion intrinsic causes a process image to waitaptint until the completion
of all non-blocking PUT operations associated withgi on_i d that the process image
initiated. It is a run-time error to complete a non-blockirggion that is not currently
pending completion.

Using these hints, theaf ¢ run-time system can readily exploit non-blocking com-
munication for PUTs and overlap communication with compata Overlapping GET
communication associated with reads of non-local co-agletg with computation would
also be useful. We are currently exploring how one might isgneamplement support
for overlapping GET communication with computation, eithe initiating GETs early or

delaying computation that depends upon them.
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Chapter 6

An Experimental Evaluation of CAF Performance

In this chapter we describe our implementation strategiN#® CG, BT, SP and LU, and
present performance results on multiple architectures. afonresult is that CAF codes
can match the performance of hand-tuned MPI benchmarks tipfaglatforms. We also
evaluate the impact of the scalar and communication pedno@ optimizations described

in Chapter 5.

6.1 Experimental Evaluation

We compare the performance of the cadd c generates from CAF with hand-coded MPI
implementations of the NAS MG, CG, BT, SP and LU parallel benark codes. The
NPB codes are widely regarded as useful for evaluating thenpeance of compilers on
parallel systems. For our study, we used MPI versions freanNfRB 2.3 release. Sequential
performance measurements used as a baseline were perfosingdthe NPB 2.3-serial
release.

For each benchmark, we compare the parallel efficiency of dieicaf c-generated
code for each benchmark. We compute parallel efficiency beafe. For each parallel
versionp, the efficiency metric is computed @&Tm In this equationt, is the execution
time of the original sequential version implemented by t#&SNroup at the NASA Ames
Research Laboratory? is the number of processors; (P, p) is the time for the parallel
execution orP processors using parallelizatipnUsing this metric, perfect speedup would
yield efficiency 1.0 for each processor configuration. WeafBeiency rather than speedup
or execution time as our comparison metric because it epalsi¢éo accurately gouge the

relative performance of multiple benchmark implementagiacross thentire range of
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processor counts.

To evaluate the performance of CAF programs optimized &f/c we performed ex-
periments on three cluster platforms. The first platform weduwas the Alpha cluster at
the Pittsburgh Supercomputing Center. Each node is an SMPfour 1GHz processors
and 4GB of memory. The operating system is OSF1 Tru64 v5.1#. dluster nodes are
connected with a Quadrics interconnect (Elan3). We use@tmepaq Fortran 90 compiler
V5.5. The second platform was a cluster of HP zx6000 workstatinterconnected with
Myrinet 2000. Each workstation node contains two 900MHelltanium 2 processors
with 32KB of L1 cache, 256KB of L2 cache, and 1.5MB of L3 cacheBGB of RAM,
and the HP zx1 chipset. Each node is running the Linux opeyaystem (kernel version
2.4.18-e plus patches). We used the Intel Fortran compdesion 8.0 for Itanium as our
Fortran 90 back-end compiler. The third platform was a e€lust HP Long's Peak dual-
CPU workstations at the Pacific Northwest National Labagyatdhe nodes are connected
with Quadrics QSNet Il (Elan 4). Each node contains two 1.2@&Enium2 processors
with 32KB/256KB/6MB L1/L2/L3 cache and 4GB of RAM. The opéray system is Red
Hat Linux (kernel version 2.4.20). The back-end compilethis Intel Fortran compiler
version 8.0. For all three platforms we used only one CPU pelerto avoid memory
contention.

In the following sections, we briefly describe the NAS benahks used in our evalua-
tion, the key features of their MPI and CAF parallelizatiamsl compare the performance

of the CAF and MPI implementations on both architecturedistii

6.2 NASCG

The MPI version of NAS CG is described in section 3.2.1. Oueti CAF version of
NAS CG does not differ much from the MPI hand-coded versiarfatt, we directly con-
verted two-sided MPI communication into equivalent cadlsotify/wait and a vectorized
one-sided get communication event. Figure 6.2 shows adlfsegment of our CAF par-

allelization using notify/wait synchronization. Our expeents showed that for this code,
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Figure 6.1: Comparison of MPI and CAF parallel efficiency AS CG on Al-

pha+Quadrics, Itanium2+Myrinet and Itanium2+Quadricstrs.

replacing the co-array remote reapk( ) operation with a co-array remote write (PUT) had
a negligible effect on performance because of the amountrafisonization necessary to
preserve data dependences.

In initial experimentation with our CAF version of CG on vaus numbers of proces-
sors, we found that on less than eight processors, perfaenaas significantly lower than
its MPI counterpart. In our first CAF implementation of CGetreceive array q was a
common block variable, allocated in the static data by themiter and linker. To perform
the communication shown in Figure 6.2 our CAF compiler pngie allocated a tempo-
rary buffer in memory registered with ARMCI so that the Myetrhardware could initiate
a DMA transfer. After theget was performed, data was copied from the temporary buffer
into the q array. For runs on a small number of processorshuffers are large. More-

over, the registered memory pool has the starting addreepéndent of the addresses of
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! notify our partner that we are here and wait for
! himto notify us that the data we need is ready
call sync_notify(reduce_exch_proc(i)+1)
call sync_wait(reduce_exch_proc(i)+1)
| get data fromour partner
gq(nl:n2) = w(nl: ml+n2-nl)[reduce_exch_proc(i)]
I synchronize again with our partner to
! indicate that we have conpl eted our exchange
! so that we can safely nodify our part of w
call sync_notify(reduce_exch_proc(i)+1)
call sync_wait(reduce_exch_proc(i)+1)
! local conputation

. use q, nodify w...

Figure 6.2: A typical fragment of optimized CAF for NAS CG.

the common blocks. Using this layout of memory and a temgazammunication buffer
caused the number of L3 cache misses in our CAF code to be ufatboa of three larger
than for the corresponding MPI code, resulting in perforoatimat was slower by a factor
of five. By converting q (and other arrays used in co-arrayr@sgions) to co-arrays, it
moved their storage allocation into the segment with cayadata (reducing the potential
for conflict misses) and avoided the need for the temporaffebuOverall, this change
greatly reduced L3 cache misses and brought the perforntdritbe CAF version back to
level of the MPI code. Our lesson from this experience isth@mory layout of communi-
cation buffers, co-arrays, and common block/save arraghimequire thorough analysis
and optimization.

To summarize, the important CAF optimizations for CG arempuunication vector-
ization, synchronization strength-reduction and dataldynanagement for co-array and
non-coarray data. Here we describe experiments with NAS 86 « (size 150000, 75
iterations). Figure 6.1 shows that on the Alpha+Quadricstha Itanium2+Quadrics clus-
ters our CAF version of CG achieves comparable performantesat of the MPI version.

The CAF version of CG consistently outperforms the MPI \ardor all the parallel runs
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on Itanium2+Myrinet.
Experiments with CG have showed that using PUTs instead disGia the Quadrics
platforms yields performance improvements of up to 8% faydascale jobs on the Alpha

+ Quadrics platform and up to 3% on the Itanium2+Quadrictqaia.

6.3 NAS SP and BT
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Figure 6.3: Comparison of MPI and CAF parallel efficiency tdAS BT on Al-

pha+Quadrics, Itanium2+Myrinet and Itanium2+Quadricstrs.

An overview of the MPI versions of NAS BT and SP is describedantion 3.2.1. Our
CAF implementations of the BT and SP benchmarks was insjyethe MPI version.
When converting from MPI-based communication to co-arrélye major design choices
were investigated. First, we could use the same data distib (same data structures)
as the MPI version, but use co-arrays instead of regular Mifets. The communica-
tion is then expressed naturally in co-array syntax by desg the data movement from

the co-array buffer on the sender to the co-array buffer enrdlseiver. The second alter-
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I hs( 1:BLOCK_SI ZE, 1: BLOCK_SI ZE, .... pack into out_buffer_local......
cc, -1,
0: IMAX-1, 0: KMAX- 1, out _buffer(1l:p, stage+l:stage+l)
cr) [successor(1)] = [successor(1)] =
I hs( 1:BLOCK_SI ZE, 1: BLOCK_SI ZE, out _buffer_local (1:p, 0:0)
cc, cell_size(1,c)-1,
0: JIMAX-1, 0: KMAX-1, c) .... unpack fromout_buffer..........
(a) NAS BT (b) NAS SP

Figure 6.5: Forward sweep communication in NAS BT and NAS SP.

native follows more closely the spirit of the language. Therking data itself is stored
into co-arrays, and then the communication is expressedg-array syntax, without
any intermediate buffers for packing and unpacking. Eachgtlechoice influences the
synchronization required to achieve correct results.

The CAF implementation for BT and SP inherits the multigeniing scheme used by
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the MPI version. In BT, the main working data resides in c@ygs, while in SP it resides
in non-shared arrays. For BT, during the boundary conditmmputation and during the
forward sweep for each of the axes, in the initial version affdos were used for packing
and unpacking, as shown in Figure 6.5(a); however we hadlltmnd®UTs with notifies,
to let the other side know the data is available. A secondaengerformed source-level
communication packing. On the contrary, in SP all the comigation is performed via
co-array buffers (see Figure 6.5(b)). In the backward sweeih BT and SP use auxiliary
co-array buffers to communicate data.

In our CAF implementation of BT, we had to consider the traffdsetween the amount
of memory used for buffers and the amount of necessary sgnidation. By using more
buffer storage we were able to eliminate both output anddegiendences due to buffer
reuse, thus obviating the need for extra synchronizatios. ugéd a dedicated buffer for
each communication event during the sweeps, for a totaébsite increase by a factor of
square root of the number of processors. Experimentallyonead that this was beneficial
for performance while the memory increase was acceptalaeield better performance
on cluster architectures, we manually converted co-g@als into PUTs. Another issued
we faced was determining the correct offset in the remotarcay buffer where to put the
data. In order to avoid extra communication necessary teevet the offsets, our CAF
version exchanged this information during the programah#ation stage. This stage does
not appear in the time measurements, which only consideitieesteps.

It is worth mentioning that the initial version of CAF bencark was developed on
a Cray T3E, and our intended platform was an Itanium2 clustér Myrinet intercon-
nect. Several features available on the Cray T3E, such ageeffifine-grain communica-
tion and efficient global synchronization, were not presentlusters. In order to obtain
high-performance, we had to apply by hand the transformatsuch as: communication
vectorization, conversion of barriers into notifies, geptth conversion.

The performance achieved by the CAF versions of BT class28 1623, 200 iterations)
and SP class C (siz&52%, 400 iterations) are presented in Figures 6.3 and 6.4. On the
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pha+Quadrics, Itanium2+Myrinet and Itanium2+Quadricstrs.

Alpha+Quadrics cluster, the performance of the CAF versidil is comparable to that of
the MPI version. On the Itanium2+Myrinet cluster, CAF BT pertforms the MPI versions
by as much as 8% (and is comparable for 64 processors); otathierh2+Quadrics cluster,
our CAF version of BT exceeds the MPI performance by up to 6% ¢8 121 processors).
The CAF versions of SP is outperformed by MPI on the Alpha+dga cluster by up

to 8% and Itanium2+Quadrics clusters by up to 9%. On the uta@i+Myrinet cluster,

SP CAF exceeds the performance of MPI CAF by up to 7% (7% on 6degssors). The
best performing CAF versions of BT and SP use proceduretisglitpacked PUTs and

non-blocking communication generation.

6.4 NASLU

The MPI version of NAS LU is described in section 3.2.1. OurFCiAplementation fol-

lows closely the MPI implementation. We have transformed to-arrays the grid pa-
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Figure 6.7: Parallel efficiency for several CAF versions 8f3\BT on an Alpha+Quadrics

cluster.

rameters, the field variables and residuals, the output@opdrameters and the Newton-
Raphson iteration control parameters. Local computasosimilar to that of MPI. The
various exchange procedures use co-arrays with two cordiioies in order to naturally
express communication with neighbors in four directiormtm east, south and west. For
example, a processor with the co-indigesow, col ] will send data td r ow+1, col ]
when it needs to communicate to the south neighbor afia tow, col - 1] for the west
neighbor.

The experimental results for the MPI and CAF versions of LassIC (623, 250 itera-
tions) on all platforms are presented in Figure 6.6. On thghAtQuadrics cluster the MPI
version outperforms the CAF version by up to 9%; on the ltard#tMyrinet cluster, MPI
LU exceeds the performance of CAF LU by as much as 13%. On dnéeulin2+Quadrics
cluster, the CAF and MPI versions of LU achieve comparabtéopmance. The best per-

forming CAF version of LU uses packed PUTs and procedurétisigi
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6.5 Impact of Optimizations

In Chapter 5, we described several optimizations to imptbeeerformance of CAF pro-
grams: procedure splitting, issuing of non-blocking comration and communication
packing. To experimentally evaluate the impact of eachnoigation, we implemented
several versions of each of the NPB benchmarks presenteg.allo Figures 6.7, 6.9,
and 6.7 we present results on the Alpha+Quadrics, the Ha2iMyrinet and the Ita-
nium2+Quadrics clusters for the MPI version of BT and théofeing BT CAF versions:
strided PUTSs, strided PUTs with procedure splitting, packR&JTs, packed PUTs with
procedure splitting, packed non-blocking PUTs and paclkedbiocking PUTs with pro-
cedure splitting. In Figures 6.10, 6.11, and 6.12 we prassuits on the Alpha+Quadrics,
the Itanium2+Myrinet and the Itanium+Quadrics clustenrstfe MPI version of LU and
the following CAF versions: strided PUTSs, strided PUTs watbcedure splitting, packed
PUTs and packed PUTs with procedure splitting. For both Bd'ldn the communication
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packing is performed at source level.

For BT, procedure splitting is a high-impact transformatiat improves the perfor-
mance by 13-20% on the Alpha+Quadrics cluster, by 25-55%@iftanium2+Quadrics
cluster, and by 42-60% on the Itanium2 + Myrinet cluster. Bdr procedure splitting
yields an improvement of 15-33% on Alpha+Quadrics and 2%-d2 Itanium2 + Myrinet.
The CAF versions of BT and LU benefit significantly from thegedure splitting optimiza-
tion because SAVE and COMMON co-arrays are heavily useddal loomputations. For
benchmarks such as CG, MG and SP, where co-arrays are usédfsoldata movement
(by packing data, sending it and unpacking it on the destinpthe benefits of the proce-
dure splitting are modest. In addition, procedure sptittioesn’t degrade performance for
any of the programs we used in our experiments.

For BT, non-blocking PUTs improved performance by up to 2%hemIpha+Quadrics
platform, by up to 7% on the Itanium2+Myrinet platform and dyy to 5% on the Ita-
nium2+Quadrics platform. For MG, non-blocking PUTs impedyperformance by up to
3% on all platforms. For SP, non-blocking communicationiaved performance as much
as 8% on Itanium2+Myrinet, though only up to 2% on the Quadeclasters.

Packing data and performing contiguous rather than stitdéts yields a performance
improvement on both Quadrics platforms, on which the ARM®@idry does not provide
automatic packing. On the Myrinet platform, ARMCI suppaitga packing for commu-
nication, and thus there is no improvement from packing datource level in CAF ap-
plications. For BT CAF, the execution time is improved up 18@3on the Alpha+Quadrics
cluster and up to 30% on the Itanium2+Quadrics cluster. EbCIAF, the improvement is

up to 24% on the Alpha+Quadrics cluster and up to 37% on tineuita2+Quadrics cluster.
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Chapter 7

Comparing the Performance of CAF and UPC Codes

In chapter 6 we have presented the impact of communicatidnsgnchronization opti-
mizations on CAF implementations of the NAS benchmarks. @omcation aggregation
and generating code amenable to backend compiler optizadre important concerns
for other PGAS languages as well. In this chapter we evathate) PC implementations of
the NAS benchmarks CG and BT and show how applying sourcé dgienizations can
improve their scalar and communication performance. Th€ pgramming model and

UPC compilers were reviewed in Section 2.2.1.

7.1 Methodology

To assess the ability of PGAS language implementationsliced@erformance, we com-
pare the performance of CAF, UPC and Fortran+MPI implenteamsa of the NAS Parallel
Benchmarks (NPB) CG and BT. The NPB codes are widely usedviluating the per-
formance of parallel compilers and parallel systems. Forstudy, we used MPI codes
from the NPB 2.3 release. Sequential performance measuntsmsed as a baseline were
performed using the Fortran-based NPB 2.3-serial reldds2 CAF and UPC benchmarks
were derived from the corresponding NPB-2.3 MPI implemigons; they use essentially
the same algorithms as the corresponding MPI versions.

MPI versions of the NAS CG and BT were described in sectiorl3\8/e presented the
CAF versions of NAS CG and BT in sections 6.2 and 6.3.
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7.2 Experimental Platforms

Our experiments studied the performance of the NAS CG and &ichmarks on four
architectures.

The first platform is a cluster of 92 HP zx6000 workstationsiconnected with Myrinet
2000. Each workstation node contains two 900MHz Intel liemP processors with 32KB
of L1 cache, 256KB of L2 cache, and 1.5MB L3 cache, 4-8GB of RAd the HP zx1
chipset. Each node is running the Linux operating systermgteversion 2.4.18-e plus
patches). We used the Intel compilers V8.0 as our back-entpiter and the Berkeley
UPC compiler V2.1.0with thegmconduit.

The second platform was the Lemieux Alpha cluster at theslRitgh Supercomput-
ing Center. Each node is an SMP with four 1GHz processors @ilef memory. The
operating system is OSF1 Tru64 v5.1A. The cluster nodesareacted with a Quadrics
interconnect (Elan3). We used the Compaqg Fortran 90 comyilés and Compaq C/C++
compiler V6.5 as well as the Berkeley UPC compiler V2i@ging theel an conduit.

The other two platforms are non-uniform memory access (NUMwhitectures: an
SGI Altix 3000 and an SGI Origin 2000. The Altix 3000 has 12&itm2 1.5GHz pro-
cessors with 6MB L3 cache, and 128GB RAM, running the Linu&B with the 2.4.21
kernel, Intel compilers V8.0, and the Berkeley UPC compifér1.¢F using theshmem
conduit. The Origin 2000 has 32 MIPS R10000 processors wWitB #2 cache and 16 GB
RAM, running IRIX64 V6.5, the MIPSpro Compilers V7.4 and tBerkeley UPC compiler
V2.0.2 using thesnp conduit.

*back-end compiler options: -overridienits -O3 -g -tpp2
tback-end compiler options: -fast -O5 -tune host -intriasic
tback-end compiler options: -overridienits -O3 -g -tpp2
$back-end compiler options: -64 -mips4 -DMPI -O3
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7.3 Performance Metric

For each application and platform, we selected the largedtigm size for which all the
MPI, CAF, and UPC versions ran and verified within the aratuse constraints (mainly
memory).

For each benchmark, we compare the parallel efficiencieseoCAF, UPC and MPI
versions. We compute parallel efficiency as follows. Forhegarallel versiorp, the ef-
ficiency metric is computed a@t&—m In this equationt; is the execution time of the
original Fortran sequential version implemented by the Nf&&up at the NASA Ames
Research Laboratory? is the number of processors, (P, p) is the time for the paral-
lel execution onP processors using parallelizatign Using this metric, perfect speedup
would yield efficiency 1.0. We use efficiency rather than siogeor execution time as our
comparison metric because it enables us to accurately ghagelative performance of
multiple benchmark implementations across ¢éméire range of processor counts. There
are also sequential C implementations of the NAS CG and BThrearks that employ the
same algorithms as the original Fortran versions. The padace of the C version of CG
is similar to that of the original Fortran versions. The Csien of BT is up to two times

slower than its Fortran variant.

7.4 NAS CG

Figures 7.1 and 7.2 show the parallel efficiency of NAS CGs#a® (problem size 14000)
and C (problem size 150000) on an Itanium2+Myrinet 2000telusin the figure, MPI
represents the NPB-2.3 MPI version, CAF represents theda&AF versionBUPCrep-
resents a UPC implementation of CG compiled with the Begk&lPC compiler,CAF-
barrier represents a CAF version using barrier synchronizatioth BAsP C-reductiorrep-
resents an optimized UPC version.

The CAF version of CG was derived from the MPI version by coting two-sided MPI

communication into equivalent calls to notify/wait and t@zed one-sided communica-
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Figure 7.1: Comparison of MPI, CAF and UPC parallel efficiefar NAS CG class A on

an ltanium2+Myrinet architecture.

tion [56]. TheBUPCversion is also based on the MPI version; it uses UPC sharagsar
for communication and split-phase barriers and employsattiprivatization [42] (using
regular pointers to access shared data available locallyyiproved scalar performance.
The performance of the MPI and CAF versions is comparablelss C, consistent
with our previous studies [56, 73]. The performanceB&fPC was up to a factor of 2.5
slower than that of MPI. By using HPCToolkit, we determinédttfor one CPU, both
the MPI and theBUPC versions spend most of their time in a loop that performs asgpa
vector-matrix product; however, tHBUPC version spent over twice as many cycles in
the loop as the Fortran version. The UPC and the Fortranoressf the loop are shown
in Figure 7.5. By inspecting the Intel C and Fortran compileptimization report, we
determined that the Fortran compiler recognizes that the p@rforms a sum reduction and
unrolls it, while the C compiler does not unroll it. We maryahodified the UPC version
of the loop to compute the sum using two partial sums, as shoviAigure 7.5(c); we

denote this versioBUPC-reduction On Itanium processors, this leads to a more efficient
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sum = 0. 0;

for (k = rowstr[j];
sum = 0.dO
k <rowstr[j+1];
do k=rowstr(j),rowstr(j+1)-1

k++) {
sum = sum + a(k)=*p(colidx(k))
sum +=
end do
a[ k-1] *xp[ col i dx[ k-1]-1];
}
(a) UPC (b) Fortran
tl =t2 =0
for (...; k+=2) {

tl += a[k-1] = p[colindex[k-1]-1]
t2 += a[k] * p[colindex[Kk]-1]
}
/1 + fixup code if the range of k isn’'t even

sum=t1 + t2
(c) UPC with sum reduction

Figure 7.5: UPC and Fortran versions of a sparse matrixev@coduct.

instruction schedule.

For one CPUBUPC-reductiomachieved the same performance as MPI. The graph in
Figure 7.2 shows thaBUPC-reductionis up to 2.6 times faster theBUPC. On up to
32 CPUs,BUPC-reductionis comparable in performance to MPI. On 64 CPB&IPC-
reductionis slower by 20% than the MPI version. To explore the remaulifferences, we
investigated the impact of synchronization. We impleme@€AF version that uses bar-
riers for synchronization to mimic the synchronizationgmet inBUPC-reduction As
shown in Figure 7.2, the performance GAF-barrier closely matches that dBBUPC-
reductionfor large numbers of CPUs; it also experiences a 38% slowdmwmpared to
the CAF version.

Figure 7.3 shows the parallel efficiency of NAS CG class B Ifpgm size 75000) on
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an Alpha+Quadrics cluster. This study evaluated the samstoves of the MPI, CAF and
BUPCcodes as on the Itanium2+Myrinet 2000 cluster. On this ptatf the three versions
of NAS CG achieve comparable performance. The Compaqg cempés able to optimize
the non-unrolled C version of the sparse matrix-vector pebtbop; for this reasoBUPC
andBUPC-reductioryield similar performance.

Figure 7.4(a) shows the parallel efficiency of NAS CG clasp@lflem size 150000)
on an SGI Altix 3000. This study evaluates the same versibNAS CG as those used on
the Itanium2+Myrinet 2000 cluster. The CAF and MPI versibage similar performance.
BUPC s up to a factor of 3.4 slower than MPBUPC-reductionperforms comparably
to MPI on up to 32 CPUs and it is 14% slower on 64 CPUs. Tid--barrier version
experiences a slowdown of 19% relative to CAF. Notice alst thile the performance
degradation due to the use of barrier-only synchronizasiemaller on the SGI Altix 3000
than on the Itanium2+Myrinet 2000 cluster, it prevents eeimg high-performance on

large number of CPUs on both architectures.
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The parallel efficiency of NAS CG class B (problem size 75000)the SGI Origin
2000 is shown in Figure 7.4(b). We used the same MPI and CAEiores as for the
previous three platforms. We used the Berkeley UPC and tinepiidl UPC compilers to
build the UPC codes; the corresponding versionsBW®C andIUPC. On this platform,
MPI, CAF andBUPC have comparable performance across the range of CPUs. hn eac
case, the MIPSPro compilers were able to optimize the spaasex-vector product loop
automatically and effectively; consequently, using thetiphsums version didn’t boost
performance. We also didn’'t notice a performance diffeeehetween CAF an€CAF-
barrier. ThelUPC version is up to 50% slower than the other three versions prineipal
loss of performance stems from ineffective optimizatiothefsparse-matrix vector product
computation.lUPC-reductionrepresents an IUPC-compiled version of UPC CG with the

sparse matrix-vector product loop unrolled; this vers®anly 12% slower than MPI.

7.5 NASBT

In Figures 7.6 and 7.7, we present parallel efficiency resaflNAS BT classes A (prob-
lem size64%) and C (problem siz&623) on an Itanium2+Myrinet 2000 cluster. We used the
NPB-2.3 MPI version, MPI, the most efficient CAF version, CGARJPC implementation
similar to MPI and compiled with the Berkeley UPC compilBt)PC, and two optimized
UPC versionsBUPC-restrictandBUPC-packedDue to memory constraints, we couldn’t
run the sequential Fortran version of BT for class C; to camparallel efficiency we as-
sume that the efficiency of MPI on four CPUs is one, and comiheteest of the efficiencies
relative to that baseline performance.

The CAF implementation of BT is described in more detail iafer 6. It uses com-
munication vectorization, a trade-off between commuincabuffer space and amount of
necessary synchronization, procedure splitting and nocking communication. It also
uses the packing of stridédUTs, due to inefficient multi-platform support of strid&tUTs
by the CAF runtime. The initial UPC version was also deriveahf the MPI version.

The performance of the CAF version is better than or equahab of MPI. The per-
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formance of the initial UPC versiolBUPC, was up to a factor of five slower than that
of the MPI version. By using HPCToolkit, we determined thewesal routines that per-
form computation on the local part of shared data, nanmatynul _sub, mat nul _vec,

bi nvr hs, bi nvcr hs andconput e_r hs, are considerably slower BUPC compared
to the MPI version. To reduce overly conservative assumpigout aliasing, we added
ther estri ct keyword to the declarations of all the pointer argumentfiefsubroutines
mat mul _sub, mat nul vec, bi nvr hs, andbi nvcr hs. The modified UPC version of
NAS BT isBUPC-restrict it is up to 42% faster thaBUPC.

To investigate the impact of communication performance analgel efficiency, we in-
strumented all NAS BT versions to record the times spent mroanication and synchro-
nization. We found thaBUPC-restrictspent about 50-100 times more in communication
on the Itanium2+Myrinet 2000 cluster because the commtinitén the sweeps was not
fully vectorized,; it transfers a large number of message&saflouble precision numbers.
In chapter 6 we show that, in the absence of efficient runtiappsrt for strided commu-
nication, packing for the CAF version of BT can improve peniance by as much as 30%
on cluster platforms.

We transformed thBUPC-restrictversion to perform packing and unpacking and used
the UPCupc_nenget primitive to communicate the packed data; the resultingioer
with packed communication is denotBPC-packedThis version is up to 32% faster than
BUPC-restrict Overall,BUPC-packedields a factor of 2.44 improvement ovBUPC.

In Figure 7.8 we present the results for NAS BT clas¢dBoblem sizel02%) on an
Alpha+Quadrics cluster. The MPI version yields the bestgeerance; CAF is up to 26%
slower than MPI, andBUPCis up to two times slower than MPI. On the Alpha+Quadrics
cluster, using the estri ct keyword didn’'t have an effect; consequentBLJPC and

BUPC-restricthave similar performance. This shows that even though tlck-bad C

TWe used class B due to limitations encountered for class @&ECAF andBUPCversions. CAF could
not allocate the large data size required for BT class C ol smaber of processors, whiBUPCcould not

allocate memory for a number of threads larger than 100.
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compiler can optimize routines such amt nul _sub, mat mul _vec, bi nvr hs, and

bi nvcr hs, which contain at most one loop or just straight-line coddais difficulties
optimizingconput e_r hs. This subroutine contains several complex loop nests and pe
forms references to the local parts of multiple shared arigsing private pointers; this
poses a challenge to the back-end C compiler. In the CAFarersbnput e r hs per-
forms the same computations on local parts of co-arrayspnwey the lack of aliasing to
the back-end Fortran compiler we use procedure splittimgkidg of communication led
to a performance gairBUPC-packeds up to 14% faster thaBUPC, although it is still up

to 82% faster than MPI.

In Figure 7.9 we present the results for NAS BT class B (pnobsize 102%) on an
SGI Altix 3000 platform. We studied class B, due to memory @imgk constraints on the
machine. The MPI and CAF versions have similar performamdele BUPC is up to
two times slower than MPBUPC-restrictis up to 30% faster thaBUPC and up to 43%
slower than MP1.BUPC-packedhas the same performance BEIPC-restrict Packing
didn't improve the performance because fine-grain datasteas are efficiently supported
in hardware.

Finally, in Figure 7.10 we present results on the SGI Origla@machine. We studied
class A (problem sizé4%) of NAS BT due to memory and time constraints. The CAF
and MPI versions perform comparably, whiB®PC performs 40% slower than the MPI
version. Similar to our experiences with the other benclksjausingr estri ct didn’t
improve the performance &UPC-restrict and similar to the SGI Altix 3000, communi-

cation packing didn’t improve the performanceBiiPC-packed
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Chapter 8

Analyzing the Effectiveness of CAF Optimizations

An application compiled by an optimizing compiler usuallyoergoes several transforma-
tions and optimizations with the goal of increasing the egaplon’s performance. It is
often desired to quantify how much each optimization ctwtes to performance; it is also
important to understand how optimizations interact witbheather, e.g., one optimization
might be an enabling transformation for another optim@atior might inhibit it. Due to
the complex nature of the transformations, one needs to &aigorous methodology to
estimate these effects. Such a methodology is th@'thdactorial design [123]. In this
chapter we will use thé*r full factorial design with- replications to assess the impact of
compiler optimizations and their interactions on applaaperformance.

In previous chapters, we identified several important sstimesource code transfor-
mations to increase the performance of parallel CAF codesdetstanding how trans-
formations affect performance helps to prioritize theiplementation. For this study, we
selected the LBMHD [157] application, described in Sec8dh2, coded several Co-Array
Fortran versions, and analyzed it using te experimental design methodology. Since
our ultimate goal is to achieve portable and scalable higfopeance, we also present a
comparison of the best-performing CAF version of LBMHD withMPI counterpart.

In section 8.1 we present an overview of tife: experimental design methodology
and we describe a CAF implementation of LBMHD in section 3.2We describe our
experimental approach in section 8.3, and present ourtsesnt analysis in section 8.4.

Finally, we discuss our results in section 8.5.
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8.1 2Fr Experimental Design Methodology

The 2%r experimental design is used to determine the effedt tfctors, each of which

has two levels, and replications are used to estimate the experimental errbe de-

sign consists of determining factors and the model, coostw the corresponding sign
table, collecting experimental data, finally, determinthg model coefficients and their
confidence intervals as well as running visual tests to yéhié model assumptions. The
interesting factors and interactions should be statibfisggnificant (the confidence inter-
val does not include zero), and practically significant (ieecentage of variation explained
is larger than 0.05% according to Jain). The details oRtheexperimental design can be

found in Jain’s performance analysis book [123] chapterg8.7

8.2 Writing LBMHD in CAF

We obtained both MPI and CAF versions of LBMHD from Jonathant€r from Lawrence
Berkeley National Laboratory. The original CAF version dMHD was developed for
the Cray X1 architecture. It uses allocatable co-arrays @artlally vectorized remote
co-array reads (GETs) to communicate data between prases®é converted remote
co-array reads into remote co-array assignments (PUT sjaole the use of non-blocking
communication hints. For the problem sizes1624? and 20482, which we used in our
experiments, communication is a significant portion of pang execution time. Thus, we
tested transformations that optimize communication, migaar, communication vector-
ization, communication packing and aggregation, syndaation strength reduction, and
use of non-blocking communication hints. The LBMHD codesloet offer opportunities
to evaluate the procedure splitting optimization becawssomputation is performed using

local co-array data.
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Symbol Factor Level -1 Level +1
A Comm. vectorization unvectorized comm vectorized comm
B Sync. strength-reduction group sync  point-to-point sync
C Comm. packing unpacked comm packed comm
D Non-blocking comm. blocking comm  non-blocking comm
E Architecture type cluster smp
F Number of CPUs 4 64
G Problem size 10242 20482

Table 8.1: Factors and levels for the CAF implementatiorlsBWHD.

8.3 Experimental Design

Before using the*r experimental design methodology, we had to carefully cadbs
relevant factors. We looked at a total of seven factars; G, out of which four repre-
sent the presence or absence of optimizations, while thainemg three include problem
size, number of CPUs and architecture type; the meaninghettibto each factor levels is
described in Table 8.1.

We analyzed our data with both additive and multiplicativedels. For the additive
model, the model equations foR&- experiment (for a particular choice of platform, num-

ber of CPUs and problem size) is

Y = (qo+4gaTa+qTB + qcxc +4pTp + qaBTAB + QacTac + QADTAD +

qBcTBC + 4BDTBD + qcDXcD T QABCTABC + QABDTABD + QACDT ACD
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For the multiplicative model, the model equation is

y — 10810QA33A 10‘13333 1OQCCCC 1OQD1'D 1OQAB33AB 1OQACxAC 1OQAD33AD
1OQBCIBC 1OQBDxBD 1OQCDxCD 1OQABCxABC 1OQABDCCABD

10‘1ACD$ACD 10‘]BCD$BCD 10‘]ABCD$ABCD

For the2*k experiment with the factord, B, C, andD, we hand-coded 16 versions of
the LBMHD benchmark. The versions were ternmdtd- caf - xyzw, wherez, y, z, and

w have the following meaning:

0 Ty =—1 0 rg = —1
r = y:

1 Ty = +1 1 rg = +1

0 IC:—l 0 ZL’D:—l
z = w =

1 $C=+1 1 ZED:+1

When implementing a version with synchronization strengttuction,mhd- x1zw,
the communication is essentially the same as in the verdiaiz x0zw, but the synchro-
nization primitives are interspersed with the communaratiode; async_not i fy to an
imageP is issued as soon as the communication evenishave been issued.

When implementing a version that employs communicatiokipg¢nhd- xy 1w, com-
munication to a imagé’ is issued as soon as packing for that image is ready; takiag th
one step further, we have reordered the packing and the comation steps such that a
image packs and communicates all necessary data for oneboeigt a time. Correspond-
ingly, on the destination side, a image waits for a notif@matthen unpacks the data, for one
source at a time. When using the non-blocking communicativos provides more oppor-
tunities to overlap communication with packing and unpagkilt is important to mention
that communication packing superseeds communicatioroueation; for this reason, a
versionmhd- caf - 1ylwis identical to the versiomhd- caf - Oy1w.

To perform experiments considering any of the remainingofac £, F', or GG, one
simply changes the submission parameters such as proldemfsiumber or CPUs, or the
target machine.

We performed two sets of experimen2ér and2°r, measuring the running time as the
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Factor | Effect | % of Variation | Confidence Interval Stat. Imp.
I -1.0167 0.0000{ (-1.0428,-0.99 X
A 0.0029 0.0061 (-0.0233,0.03

B -0.0255 0.4840 (-0.0516,0)

C -0.3324 82.3032| (-0.3585,-0.31 X
D -0.0185 0.2556| (-0.0446,0.01

AB -0.0109 0.0885 (-0.0370, 0.02

AC -0.0029 0.0061| (-0.0290,0.02

AD 0.0024 0.0042 (-0.0237,0.03

BC -0.0429 1.3688| (-0.0690, -0.02 X
BD 0.0078 0.0450 (-0.0183,0.03

CD -0.0186 0.2590| (-0.0448,0.01

ABC 0.0109 0.0885| (-0.0152,0.04

ABD -0.0043 0.0138 (-0.0304, 0.02

ACD | -0.0024 0.0042| (-0.0285,0.02

BCD 0.0225 0.3778| (-0.0036,0.05

ABCD || 0.0043 0.0138 (-0.0218,0.03

Table 8.2: Effects and variation explained for LBMHD, fooptem size1024? and 64
CPUs, on the SGI Altix 3000 platform.

response variable. The first set analyzes four factors (Afider either a multiplicative or
an additive model. The second set is an attempt to add a fdtbrfa the architecture type.
The fifth factor compares a cluster-based architecturai(ita2+Quadrics) and a hard-
ware shared-memory architecture (Altix 3000). Becauseuhéme difference between
equivalent runs on different architectures is significardtge than runtime variation due
to optimizations on either of the platforms, we normalizetime of each run by dividing it

by the average time among all runs on the correspondingtaottire. While this might in-
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Factor | Effect | % of Variation| Confidence Interval Stat. Imp.
I 3.5580 0.0000| (3.5572,3.5587 X
A -0.0069 0.4200/ (-0.0076, -0.0061 X
B -0.0213 4.0500/| (-0.0221, -0.0206 X
C -0.1030 94.7400| (-0.1038, -0.1023 X
D 0.0015 0.0200| (0.0008,0.0023 X
AB 0.0025 0.0600| (0.0018,0.0033 X
AC 0.0069 0.4200| (0.0061,0.0076 X
AD 0.0010 0.0100| (0.0003,0.0018 X
BC 0.0018 0.0300| (0.0011,0.0026 X
BD 0.0017 0.0300| (0.0010, 0.0025 X
CD -0.0017 0.0300| (-0.0024 , -0.0009 X
ABC | -0.0025 0.0600| (-0.0033, -0.0018 X
ABD 0.0007 0.0000| (-0.0001,0.0014

ACD | -0.0010 0.0100| (-0.0018, -0.0003 X
BCD || -0.0010 0.0100| (-0.0018, -0.0003 X
ABCD | -0.0007 0.0000| (-0.0014,0.0001

Table 8.3: Effects and variation explained for LBMHD, fooptem size2048% and 64
CPUs, on the SGI Altix 3000 platform.

troduce some inaccuracy into the analysis, without it, thhigecture type factor dominates
the analysis making other factor and interaction contrdms essentially irrelevant.

We have also tried to have the problem size as a factor. Hawthe problem size
dominates all other factors and interactions, making tladyars not interesting. Similarly,
if we use the number of CPUs as a factor (e.g., 4 and 64), it dates the analysis. It
might be possible to successfully use this factor for wealtisg experiments, in which

one expects the running time not to depend so much on the mwhld®Us as it does for
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Figure 8.1: Visual tests for problem siz&&4* and20482 , 64 CPUs, on the SGI Altix
3000.

strong scaling experiments.
Our final goal is to achieve high parallel performance. Sthesgold standard of paral-
lel programming is still MPI, it is usual for the performanuarallel languages benchmarks

to be compared against that of their MPI counterparts. Wepesenthe best-performing
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CAF version of LBMHD with the equivalent MPI version over aga span of CPU num-

bers.

8.4 Experimental Results

We evaluated the impact and interactions of CAF optimizegion three platforms.

The first platform used was a cluster of 2000 HP Long’'s Peak @4 workstations at
the Pacific Northwest National Laboratory. The nodes ar@ected with Quadrics QSNet
Il (Elan 4). Each node contains two 1.5GHz Itanium?2 procesgdith 32KB/256KB/6MB
L1/L2/L3 cache and 4GB of RAM. The operating system is RedLitaix (kernel version
2.4.20). The back-end compiler is the Intel Fortran conmpiézsion 8.0.

The second platform is an SGI Altix 3000, with 128 Itanium2GHz processors with
6MB L3 cache, and 128 GB RAM, running the Linux64 OS with th4.21 kernel and the
Intel Fortran compiler version 8.0.

The third platform we used for experiments was a cluster ¢iB2Zx6000 workstations
interconnected with Myrinet 2000. Each workstation nodatams two 900MHz Intel
Itanium 2 processors with 32KB/256KB/1.5MB of L1/L2/L3 ¢ex; 4-8GB of RAM, and
the HP zx1 chipset. Each node is running the Linux operatysesn (kernel version
2.4.18-e plus patches). We used the Intel Fortran compdision 8.0 for Itanium as our
Fortran 90 back-end compiler.

On the SGI Altix 3000 system, we performed- full-factorial experiments for sizes
10242 and2048?%, on 4, 16, and 64 CPUs. We performed experiments for bothdtitive
and the multiplicative model; the percentage of variatipl@ned by the major factors are
similar, and the visual tests are similar for both models.\Wlepresent the results for the
multiplicative model for the problem siz&§24? and20482, on 64 CPUs.

In Tables 8.2 and 8.3 we present the coefficient for the midéapve model, the per-
centage of variation explained by each factor and the camdléntervals for each factor
for problem sizes 0f024? and20482. For a problem size of0242, the factors that explain

the largest percentage of variation and are statisticadiyificant at the 90% confidence
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level areC', the communication packing optimization, which explair288of variation,
followed by BC, the interaction between synchronization strength-reda@nd commu-
nication packing. Statistically insignificant factors ateB, D, AB, AC, AD, BD, CD,
ABC, ABD, ACD, BCD andABCD. The results are surprising, showing that only one
factor and one interaction are simultaneously practicatipificant and statistically signif-
icant. Overall, the chosen factors and their interactioqdagn 85% of total variation. For
the problem size 020482, the major factors and interactions &fe communication pack-
ing, B, synchronization strength-reductiof,, communication vectorizatioddC', AB, and
ABC. The factorsD, AD, BC, CD, ACD, andBC'D are practically insignificant (their
percentage of variation explained is less than 0.05). THhy statistically insignificant
interactions arel BD and ABC'D.

In Figure 8.1 we present the visual tests recommended by Jam visual tests don't
show any trend of residuals vs the predicted value or therarpat number; the quantile-
guantile plots of the residuals are reasonably linear.

The factors that explain the largest percentage of vanaiad are statistically signifi-
cant at the 90% confidence level @&'ethe communication packing optimization, which ex-
plains 82% of variation, followed b C', the interaction between synchronization strength-
reduction and communication packing. Statistically ingigant factors arel, B, D, AB,
AC, AD, BD, CD, ABC, ABD, ACD, BCD andABCD. The results are surprising,
showing that only one factor and one interaction are simelasly practically significant
and statistically significant. Overall, the chosen factond their interactions explain 85%
of total variation.

In Table 8.4 we present the percentage of variation expliaiyethe practically and
statistically significant factors for LBMHD, for problemzsis1024* and2048% on 4, 16
and 64 CPUs. The dominant factor is communication packixgiagming 82-99% of vari-
ation. Synchronization strength-reduction explains 4%aofation for problem size(048>
on 64 CPUs, but is statistically insignificant for problemesi 0242, contrary to our ex-

pectations; we explain this by the fact that #24? and20482 problem size experiments
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10242 20482
Factor 4| 16| 64 4| 16| 64
| 0 0 0 0 0 0
A 1.482| 0.898| 0.334| 0.329| 1.581| 0.832
B 0.303| 0.059| 0.050| 0.497| 1.109| 0.270
C 95.701| 97.316| 98.488| 92.349| 93.368| 91.969
D 0.091 0.231
AC 1.482| 0.898| 0.334| 0.329| 1.581| 0.832
AD 0.510
BC | 0.240 0.108| 0.127
BD | 0.113| 0.118 0.528| 0.883
cD || 0.181| 0.147 3.114| 0.667| 0.975
ACD 0.510
BCD | 0.063 0.868| 0.194

Table 8.4: Practically significant factors at 90% confideiocé.BMHD, for problem sizes
1024% and20482 and for 4, 16, and 64 CPUs, on the Itanium2+Quadrics platform

were performed on different CPU sets and under differertegys$oads. Communication
vectorization,A, and the interactionlC' explain up to 2.27% for four CPUs, and less for
a larger number of CPUs; this shows that as we increase théetuoh CPUs, packing
is more important for achieving high-performance. Finatign-blocking communication
has a insignificant impact on performance; this is expedtetshe SGI Altix 3000 system
doesn't provide hardware support for non-blocking comroation.

Similarly to the SGI Altix platform, tables 8.5 and 8.6 preséactor and interaction
coefficients, percentage of variation explained by themthanl confidence intervals at the
90% significance level under a multiplicative model 24> and 20482 problem sizes

on an Itanium?2 cluster with a Quadrics interconnect (mppRIPNluster). For thel 0242
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Figure 8.2:  Visual tests for problem siz&624> and 2048, 64 CPUs, on the Ita-

nium2+Quadrics architecture.

problem size, the most significant factords communication packing and aggregation,
explains 98.5% of variation. Other significant factors are8BAD, AC, and CD. FoR(048>
problem size, again communication packing is the most sggmit factor explaining 92%

of variation; other significant factors are A, AC, and CD.
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Figure 8.2 present Jain-recommended visual tests to vér@ymodel. The residu-
als seem not to depend on the predicted response and experniomber. The quantile-
guantile plots are reasonable close to linear indicatisgfidutions of residuals close to the
normal distribution.

Table 8.7 presents statistically and practically signifidactors and interactions for
1024% and2048% problem sizes on 4, 16 and 64 CPUs. The major factor is conrauni
tion packing and aggregatio’ for all experiment configurations. To our surprise, the
contribution of the communication vectorization factorsa@arely noticeable (0.3-1.5%)
indicating that there exists an inefficiency in the ARMCI $brided transfers.

We performed’®r experiments on all three platforms, choosing the factor8AC,
D, and adding F, the number of CPUs; the response was theetxgalition time. The
percentage of variation explained by the number of CPUs iig kigh: 96-99% on the
Itanium2+Quadrics cluster, 96-99% on the SGI Altix 3000teys and 99.6% on the Ita-
nium2+Myrinet 2000 cluster. We noticed similar results whising the parallel efficiency
as response variable. This results are due to the fact thisfHIB exhibits strong scaling
(i.e. the problem size is the same for an increasing numb&pPafs). The conclusion is
that we cannot use the number of CPUs as a factor, becausald s@ampletely dominate
the remaining factors.

Figures 8.3, 8.4, and 8.5 present the parallel efficiencyMBt and fastest CAF ver-
sions over a large range of CPUs. The plots show that on theA&&13000 and Ita-
nium2+Quadrics platforms the CAF version significantly pmrforms the MPI version.
MPI outperforms CAF for th€048? size on the Itanium2+Myrinet cluster, while for the
10242 the MPI and the CAF version achieve comparable performance.

Table 8.8 presents statistically and practically signifidactors and interactions in a
2°r cross-platform experimental design. The fifth factor, Bndt for the architecture type:
cluster (mpp2) or hardware shared memory (Altix). The ragrtimes were normalized
as explained in 8.3 to accomodate for differences in segdlopmance due to different

host CPUs and memory controllers. While the normalizatioghmintroduce errors into



Factor | Effect | % of Var. | Confidence Interval Stat. Imp.
| -1.223|  0.000 (-1.23,-1.22) X
A -0.019 0.334 (-0.03,-0.01) X
B -0.008 0.050 (-0.01,0.00) X
C -0.333| 98.488 (-0.34,-0.33) X
D -0.002 0.003 (-0.01,0.00)

AB -0.002 0.003 (-0.01,0.00)

AC 0.019 0.334 (0.01,0.03) X
AD 0.002 0.002 (0.00,0.01)

BC -0.005 0.020 (-0.01,0.00)

BD 0.001 0.000 (-0.01,0.01)

CD -0.007 0.045 (-0.01,0.00) X
ABC 0.002 0.003 (0.00,0.01)

ABD -0.002 0.004 (-0.01,0.00)

ACD | -0.002 0.002 (-0.01,0.00)

BCD | -0.002 0.002 (-0.01,0.00)
ABCD | 0.002 0.004 (0.00,0.01)
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Table 8.5: Effects and variation explained for LBMHD (siz&24%, 64 CPUs) on the

Itanium2+Quadrics platform.

the model, for1024> problem size the total percentage of explained variatio®Ri€%;

however, it is only 59.12% fo2048> problem size. The most dominant factor is again

communication packing and aggregation. The architeciyype factor is also significant:
8.3% for1024? problem size and 5.1% f@048? problem size.
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Factor | Effect | % of Var. | Confidence Interval Stat. Imp.
| 3.212|  0.000 (3.21,3.22) «x
A -0.012 0.832 (-0.02,-0.01) X
B -0.007 0.270 (-0.01,0.00)

C -0.122| 91.969 (-0.13,-0.12) X
D -0.005 0.157 (-0.01,0.00)

AB 0.000 0.001 (-0.01,0.01)

AC 0.012| 0.832 (0.01,0.02) x
AD 0.003 0.047 (0.00,0.01)

BC -0.004 0.108 (-0.01,0.00)

BD -0.001 0.012 (-0.01,0.01)

CD -0.013|  0.975 (-0.02,-0.01)  x
ABC 0.000 0.001 (-0.01,0.01)

ABD 0.002 0.020 (0.00,0.01)

ACD | -0.003 0.047 (-0.01,0.00)

BCD | -0.005| 0.144 (-0.01,0.00)
ABCD | -0.002 0.020 (-0.01,0.00)

Table 8.6: Effects and variation explained for LBMHD (si2@8%, 64 CPUs) on the

Itanium2+Quadrics platform.

8.5 Discussion

Our 25 experiments showed that communication packing and agtoegis a crucial
transformation for achieving high performance over midtigrchitecture types. After us-
ing the2*r experimental design methodology to analyze the impactmteddctins of CAF
versions of LBMHD, we think that this methodology has onlyraited applicability. It is
of most use when prioritizing the implementation of suchirapations in a compiler; one

can implement first the most important optimizations, fekal by optimizations which
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% of Variation for1024% | % of Variation for20482
Factor 4| 16| 64 4| 16| 64
2.271| 0.092 1.174| 0.640| 0.420
B 0.820| 0.056 0.234| 4.050
93.021| 99.363| 82.303| 83.588| 98.032| 94.740
AB 0.060
AC 2.271| 0.092 1.174| 0.640| 0.420
BC 1.369
BD 0.187
ABC 0.060

Table 8.7: Practically and statistically significant fastéor LBMHD, for problem sizes
1024% and2048? and for 4, 16, and 64 CPUs, on an SGI Altix 3000.
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Figure 8.3: Parallel efficiency of LBMHD for problem siz&824? and20482, on an SGI

Altix 3000 system.

are part of important interactions. However, the methogyplmight be too coarse, con-

sidering that a certain optimization might be implementechultiple ways; for example,

communication packing also required a careful reorderirmpoking, communication and

synchronization events.



Factor || % of Var. (1024%) | % of Var. 20482)
I 0.0000 0.0000
A 0.1698
B 0.3395
C 90.0816 51.3322
D 0.0137
E 8.3072 5.1890
AC 0.1698
AE 0.0130
BC 0.0445
BE 0.1436
CD 0.0154
CE 0.2114
ACE 0.0130
BCDE 0.0162
Total 99.5809 59.1244
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Table 8.8: Statistically significant effects and variatexplained for LBMHD (64 CPUSs)
on the Itanium2+Quadrics and SGI Altix 3000 platforms 024> and 2048 problem

sizes.
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Chapter 9

Space-efficient Synchronization Extensions to CAF

When crafting new language features, the performance-adinigsigner should consider
whether the new features lead themselves to efficient imghéations on multiple plat-
forms. On the emerging petascale systems, both space aadrtimst be considered as
measures of efficiency. In Section 3.1 we presentedyirec _not i f y/sync_wai t syn-
chronization extensions, that enabled us to move away freingwcostly barrier synchro-
nization where lightweight point-to-point synchronizatisuffices. However, these primi-
tives requireD(P?) space for aP-processor parallel execution. In this chapter we propose
eventcountas an alternative, space-efficient synchronization masimarsketch an imple-
mentation using an Active Messages underlying layer, aptbex how several classes of

application would be written using this primitive.

9.1 Implementation ofsync _noti fy andsync wai t

There are multiple possible implementations$gmc_not i f y/sync_wai t primitives;
we will discuss several of them and point their shortcomings

One implementation would be to queue up notifies on the remaeessors, and to
have each remote process image dequeue its notifies asotrpesync wai ts. The
space requirement would be bounded by the total number sfamding notifies. For well-
written programs, we would expect the number of outstandiiifies to be reasonably
small. However, misbehaving or incorrect programs might issue notifies continuously
and not consume them, depleting the memory resources. lidwimidesirable to have
an implementation for which the space requirement wouldduended independent of the

program behavior.
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| ong sent[P];
| ong received|[ P];
| ong waited[P];
Figure 9.1: Currentcaf ¢ data structure used for the implementation of the

sync_noti fy/sync_wai t primitives.

An alternative implementation would be to use a hash tabtetfy counters per pro-
cess. The key in the hash table would be the image number sktider, and the values
cached would correspond to notify counts. This approachdveave to a space require-
ment proportional to the number of neighbors that an imageneonicates with over the
program execution. A scenario for which this approach wdaddsuboptimal is when an
image communicates with a small group during some prograasghthen with some other
group in a different phase; the hash table size would keegasmg, even the space re-
quirements for synchronization would not.

The current implementation of treync_noti fy andsync_wai t primitives in the
caf c runtime uses an amount of space bounded at program launce &trays are used,
as shown in Figure 9.1

The locatiorsent [ p] stores the number of notifisgentto processop; r ecei ved| p]
stores the number of notifiesceivedoy the current process image fragnwhilewai t ed[ p]
stores the number of notifiexpectedby the current processor from imageUpon the exe-
cution of async _not i fy(p) by processog, thecaf ¢ runtime enforces the completion
of all outstanding requests to procesgpmafter which it incrementsent [ p] on ¢ and
then copies its contents intcecei ved[ q] on processop. Upon the execution of a
sync_ wai t (q) by processop, the executing process image incrememds t ed[ q] ,
then spin waits untif ecei ved[ q] exceedsvai t ed[ q] .

While this implementation ofync_noti fy andsync_wai t enables us to over-
come the performance limitations of barrier-only synclzation, it has two significant

drawbacks.
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1. thespace cosbn P process images i©(P?); when using systems such as Blue
Genel/L, with as much as 131072 processors, the quadratie spat might become

problematic.

2. composability a programmer attempting to overlap synchronization vattal com-
putation might issue aync_noti fy in one routine and issue gync wai t in
a different routine, and would have to track the choreogyaphsynchronization
events interprocedurally. However, modern codes are Yigiudular, and compos-
ing various routines, each of which would do its own syncimation, might result

in incorrect behavior of the program.

9.2 Eventcounts

To scale to petascale systems, it would be desirable to $aee-efficientcomposable
synchronization primitives. A mechanism that caught oterdion was that oéventcounts
and sequenceyproposed by Reed and Kanodia in [167]. We proposes an dubaptd
that mechanism for CAF, by providing the following eventabinterface:

e integer function allocate_eventcount(size)
I nt eger size

This function is collective and has the effect of allocatandistributed eventcount;
on a particular image the eventcount ls|asz e entries. The eventcount allocation
routine returns a eventcount identifier, which can be furtieed to operate on the
allocated eventcount. Our interface proposes eventcdbatsare global objects,
working on the group of all the images of a running CAF progrémj72], Dotsenko
proposed an extension of CAF with co-spaces, which are graugh well-defined
topologies and created with a hierarchical structure. Exemts can be extended
from global objects to object to objects associated witlsjgaees; an eventcount
identifier will then be unique within its associated co-spa& graphical representa-
tion of an eventcount is given in Figure 9.2; we emphasizettieaeventcounts don'’t

need to have the same number of entries on each image.
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e subroutine reset _event count (evi d)
I nteger evid

This function is collective and resets the eventcount to @lbmmages and for all
entries on each image. The initial allocation of eventceyrgrforms an implicit

reset.

e subrouti ne advance_event count (evid, proc, index, count)
I nteger evid, proc, index, count

This primitive has the effect of advancing the eventcoemi d on process image
pr oc, entryi ndex by count . Similar to async_noti fy, it also means that all
communication events between the current process andgs@gehave completed

upon completion of the advance primitive pn

e subroutine wait_eventcount (evid, index, count)
i nteger evid, index, count

This primitive checks if the local entiyndex on the eventcourdgvi d on the current
process image has advanceddmunt from the last wait primitive; if the condition
is not met, the current processor’s execution is suspendgldtiue eventcount has

advanced the required number of units.

e | ogical function test_eventcount(evid, index, count)
I nteger evid, index, count

This primitive checks if the local entiyndex on the eventcourgvi d on the current
process image has advanceddmunt from the last wait primitive; if the condition

is met, the primitive returnsr ue, otherwise it return§ al se.

e subroutine rel ease_event count (evi d)
i nteger evid

This primitive frees the resources used by the eventceunt.
Operations specified using an invadigi d are incorrect and might trigger exceptions.

Eventcounts identifier can be passed as procedure arguraeatding overlap of synchro-

nization with computation. Since eventcount are allocatedlemand, different solvers
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Event count evid

[T]

Process 1 Process 2 Process n

Figure 9.2: Graphical representation of an eventcounfeliht process images can have

different number of eventcount entries.

can get different eventcounts and operate independentihem; this in effect ensures
composability with respect to synchronization of CAF rae8 using eventcounts as their

synchronization mechanism.

9.3 Eventcounts Implementation Strategy

By providing access to eventcounts by means of an API, we wgpast them in the CAF
runtime in a portable fashion as a CAF extension, withoutifgod) the caf ¢ front-end.

A practical solution for eventcounts representation omaaage is a hash tables of arrays.
For each eventcount, we need to two arrays: one correspptwlthe current values of the

eventcounts, and one corresponding to the last value ctidka wait operation.

struct Event Count {
I nt eger event Count | d;
| ong* received;
| ong* wai t ed;

On allocation, we could use a global eventcount counter vbantains the next un-

used eventcount id value; a CAF runtime would incrementahthse its value as the next
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of communication with P
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Send AM request to P N,
AM advance, evi d, ei dx, adv_count)

Process Q Atonical l'y increnent Process P

entry eidx of evcount evid
by adv_count

Figure 9.3:  Steps taken in the executionadvance_event count (evid, P,

ei dx, count).

eventcount id. Next, each image would allocate a EventCsuatture with the required
number of entries — the argumesit ze given toal | ocat e_event count , and would
initialize the received and waited values(io A pointer to the structure would then be
inserted into the hash table, using the eventcount id moduteaximum hash table size
as key. Theevent Count I d field should be added to the eventcount representation to
resolve conflicts in the hash table.

In Figure 9.3 we present a strategy of implementatyance_event count using
Active Messages (AM). GASNet provides a robust and portabjgport for active mes-
sages, while ARMCI has only fledgling support. The first seefiensure that the com-
munication events between the current procegsamdp have completed. A simple, but
inefficient way of achieving this is to force completion oftstandingPUT requests from
g to p. The next step is to send an active message request for theafsldradvance,
with the argumentsvi d — the eventcount icgi dx — the eventcount entry indegpunt
— the amount by which the eventcount entry will be increménténce the AM handler

gets scheduled for execution pnit looks up in the hash table the entry corresponding to



120

the eventcoungvi d, and then atomically updates the en#ydx, using primitives such

as fetch-and-add or load-link/store-conditional. For Aibtdries which ensure atomicity
at handle level by executing the AM handles until completothin the same tread, it is
not required to use the atomic update primitives, and simgad/writes to the eventcount
memory location suffice; GASNet is such an AM library.

On the execution of aai t _event count , the proces9 first updates the value for
thewai t ed array by adding the increment it is waiting for, then spintwais long as the
r ecei ved value for the entry of interest is strictly smaller than thesited value.

To execute the eset _event count primitive, each image looks up the eventcount
entry in the event count hash table, after which it zeroes #eei ved and thewai t ed
arrays. To deallocate an eventcount, each image looks wgvdmcount entry in the event
count hash table, after which it deallocatesitieeei ved andwai t ed arrays, followed

by deallocating the eventcount entry.

9.4 Eventcounts in Action

In this section we will present examples of eventcount usaggynchronization in several

common data exchange patterns.

9.4.1 Jacobi Solver

In Figure 9.4 we present the main loop of a Jacobi four poerat solver, and in Figure 9.5
we present the same loop, written using eventcounts fotggnzation. We need to signal
the following facts: the remote overlap regions are avéalab be written, and the buffer
writing from all four neighbors completed. We need to usean&ount with five entries

per image, one entry per neighbor to allow remote writinghrteighbor, and one entry to
signal write completion from all four neighbors. Overafietspace requirementds(5P),

compared ta@)(P?) for thesync _not i fy andsync wai t primitives.
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do step = 1, nsteps

. fill in renote overlap region for north nei ghbor ..
. fill in renmote overlap region for south neighbor ..
. fill in renote overlap region for east nei ghbor ..
. fill in renote overlap region for west nei ghbor ..
performstencil conmputation ....
enddo

Figure 9.4: Four-point stencil Jacobi solver pseudocode.

evid = al | ocate_event count (5)
north_index =1
south_index = 2
east _i ndex 3
west _i ndex 4

do step = 1,nstep

advance_event count (evi d, north_processor, south_index, 1)
advance_event count (evi d, sout h_processor, north_index, 1)
advance_event count (evi d, west_processor, east_index, 1)
advance_event count (evi d, east_processor, west_index, 1)

wai t _eventcount (evid, north_index, 1)
. fill in renote overlap region for north nei ghbor ..
advance_event count (evi d, north_processor, 5, 1)
wai t _event count (evid, south_index, 1)
. fill in renote overlap region for south neighbor ..
advance_event count (evi d, sout h_processor, 5, 1)
wai t _eventcount (evid, east_index, 1)
. fill in renote overlap region for east neighbor ..
advance_event count (evi d, east_processor, 5, 1)
wai t _eventcount (evid, west_index, 1)
. fill in renote overlap region for west nei ghbor ..
advance_event count (evi d, west_processor, 5, 1)
wai t _eventcount (evid, 5, 4)

perform stencil conmputation ....
enddo

Figure 9.5: Four-point stencil Jacobi solver written usavgntcounts.

9.4.2 Conjugate Gradient

In Section 6.2, we presented a CAF implementation of the N&3€nchmark; we present

a fragment of CG in Figure 9.6(a). Each processor needs tchsynize with[log(P)]
processors; this shows that we can implement the same gymetion using eventcounts,
each process havindog(P)| eventcount entries, which makes the overall space require-
mentO(Plog(P)) vsO(P?). In Figure 9.6(b) we present the same CAF NAS CG fragment
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! notify our partner that we are here and wait for
! himto notify us that the data we need is ready
call sync_notify(reduce_exch_proc(i)+1)
call sync_wait(reduce_exch_proc(i)+1)
| get data fromour partner
g(nl:n2) = w(nl: mL+n2-nl)[reduce_exch_proc(i)]
! synchroni ze again with our partner to
! indicate that we have conpl eted our exchange
! so that we can safely nodify our part of w
call sync_notify(reduce_exch_proc(i)+1)
call sync_wait(reduce_exch_proc(i)+1)
! local conputation
use q, nodify w...

(@)sync_noti fy/sync_wai t implementation

evid = all ocate_eventcount (ceil (I og(hum.i mages()))
! notify our partner that we are here and wait for
! himto notify us that the data we need is ready
cal | advance_eventcount (evid, reduce_exch_proc(i)+1, i, 1)
call wait_eventcount(evid,i,1)
! get data fromour partner
g(nl:n2) = w(ml: m+n2-nl)[reduce_exch_proc(i)]
I synchronize again with our partner to
! indicate that we have conpl eted our exchange
! so that we can safely nodify our part of w
cal | advance_eventcount(evid, reduce_exch_proc(i)+1, i, 1)
call wait_eventcount(evid,i,1)
! local conputation
use ¢, nodify w...

(b) Eventcount-based implementation

Figure 9.6: A typical fragment of optimized CAF for NAS CG.

as in Figure 9.6(a) implemented using eventcounts:

9.4.3 An ADI Solver

In Section 6.3, we presented an optimized CAF implememntatfdNAS SP; in Figure 9.7
we show the communication, synchronization and computatiaicture for thex_sol ve
routine, usinggync_not i f y/sync wai t primitives. Since each process image synchro-
nizes with only two neighbors in both the forward and the ekl sweep phase, we can
use an eventcount with two entries for each oftheol ve,y_sol ve andz_sol ve rou-
tines; the first eventcount entry will be used to signal thatremote buffer is available to

be written, and the second eventcount entry will be advatwedicate the completion of
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I forward substitution
do stage = 1, ncells
if ( stage .ne. 1) then
call sync_wait (predecessor(1)+1)
unpack buffer ...
if (stage .ne. ncells) then
call sync_notify(predecessor(1)+1)
endi f
endi f
perform forward sweep conputation .
if (stage .ne. ncells) then
pack data for successor ...
if (stage .ne. 1) then
call sync_wait(successor(1)+1)
endi f
perform PUT ..
call sync_notify(successor(1)+1)
endi f
enddo

! backsubstitution
call sync_notify(successor(1)+1)
call sync_wait (predecessor(1)+1)
do stage = ncells, 1, -1
if (stage .ne. ncells) then
call sync_wait(successor(1)+1)
unpack buffer ..
if (stage .ne. 1) then
call sync_notify(successor(1)+1)
endi f
el se
conputation ...
endi f
per f orm backsubstitution ...
if (stage .ne. 1) then
pack buffer ...
if (stage .ne. ncells) then
call sync_wait (predecessor(1)+1)
endi f
perform PUT to predecessor ...
call sync_notify(predecessor(1)+1)
endi f
enddo

Figure 9.7: Fragment from the CAF SP<_solve routine, using

sync.notify/sync wait.

communication. The overall space cost for the sweeps alpypgxd z-directions will then

beO(6P). The version ok_sol ve that uses eventcounts is displayed in Figure 9.8.
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evi dx = all ocate_eventcount (2)
I forward substitution
do stage = 1, ncells
if ( stage .ne. 1) then
performlocal conputation wo renote data ..
call wait_eventcount(evidx, 2, 1)
unpack buffer ...
if (stage .ne. ncells) then
call advance_event count (evi dx, predecessor(1)+1, 1, 1)
endi f
el se
performlocal conputation wo renote data ..
endi f
performlocal conputation ..
if (stage .ne. ncells) then
pack data for successor ...
if (stage .ne. 1) then
call wait_eventcount(evidx, 1, 1)
endi f
perform PUT ..
cal | advance_event count (evi dx, successor(1l)+1, 2, 1)
endi f
enddo

! backsubstitution
cal | advance_event count (evi dx, successor(1)+1, 1, 1)
call wait_eventcount(evidx, 1, 1)
do stage = ncells, 1, -1
if (stage .ne. ncells) then
call wait_eventcount(evidx, 2, 1)
unpack buffer .
if (stage .ne. 1) then
cal |l advance_event count (evi dx, successor (1) +1, 1, 1)
endi f
el se
. conmputation ...
endi f
per f orm backsubstitution ..
if (stage .ne. 1) then
pack buffer ...
if (stage .ne. ncells) then
call wait_eventcount(evidx,1,1)
endi f
perform PUT to predecessor ..
cal | advance_event count (evi dx, predecessor (1) +1, 2, 1)
endi f
enddo

Figure 9.8: Fragment from the CAF SPsol ve routine, using eventcounts.

9.4.4 Generalized Wavefront Applications

Let’s consider a generalized multiphase wavefront appdinain which the dependency
structure is given by a directed acyclic gra@p for every phase in the set of phases.

Each node executes the processing described in
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Figure 9.9: Graphical representation of progress in a gdimed wavefront application.
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p = thisimage()

foreachphasep € ¢
wait for data from all nodes in predecessors{p,
... perform local computation ....
send data to all nodes in successors{p,

end

(a) Pseudocode for a generalized sweep application

p = thisimage()
foreachphasep € ®
... fill index(p, q¢), position of p
among successors of g ...
evid, = allocateeventcount(—successors(g)—)
foreach q in predecessors(p)
advanceeventcount{vid,,q,1+index(p,q),1)
end
wait.eventcountdvid,,1,—predecessors(p—)
foreachr in successors(p)
wait.eventcountfvid,,1+index(r,p¢),1)
... send datator ...
advanceeventcouni{vid,,r,1,1)
end
end

(b) Pseudocode for a generalized sweep application usemgewnts

Figure 9.10: Pseudocode variants for a generalized sweq#igaion.

A graphical representation of the application progressvisrgin Figure 9.9. To im-
plement the synchronization, we need to (Beeventcounts. The size of eventcoynn
nodep is 1+ |successors(p, ¢)|, for a total space cost df¢€q>2521(1 +|successors(p, ¢)|.
Notice that we could reuse some of the individual phase events (for example using
only two) if we could prove that by the time we want to reuse @nécounty all the syn-
chronization performed with in a prior phase completed on all images. Each nodsl

then execute the pseudocode presented in Figure 9.10(b).
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9.5 Summary

In this chapter, we presented an extension to the CAF synaiton model, eventcounts,
aimed at addressing space efficiency on petascale machmdesyachronization compos-
ability for modular software. We described the API for ewenints, an implementation
strategy using active messages, and showed how they carebe¢aisupport data move-
ment patterns common in scientific applications. Gener®WT-based synchronization
requires two phases: obtaining permission to write the ternoffer, then performing the
remote write followed by notifying the remote process imagkee eventcounts are as dif-
ficult to use for the first synchronization phase asghi@c_noti f y/sync_wai t mech-

anism. They can be easier to use for the second part, edpetiak need notifications

from several images before proceeding. The advantageseotaunts over notifies are
reduced space cost, in most of the examples we showed, angbsability, enabling users

to integrate seamlessly modular CAF solvers developedfisrent parties.
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Chapter 10

Towards Communication Optimizations for CAF

A major appeal of a language-based programming model dveryi-based models such
as MPI is that a compiler can more readily assist a progranmtarloring the code to get
high performance on the desired platform. It would be dé&réo have a CAF compiler
perform automatic communication optimization of CAF prags; however, we first need
to create a framework that will guarantee the correctnessidf transformations. In this
chapter, we start by describing a memory consistency mod€lAF and its implications
on statement reordering, followed by a dependence anaysitegy in the presence of
co-array accesses. In Chapter 6 we mentioned that comntiamicectorization for CAF
codes such as NAS CG led to a performance improvements of 8% in this chap-
ter we present a dependence-based communication vetimmizégorithm, followed by a
proof of correctness and transformation details. We catecthe chapter by presenting the
challenges of performing vectorization in the presencesburce constraints, and discuss

future profitable dependence-based CAF optimizations.

10.1 A Memory Model for Co-Array Fortran

Having a well-defined memory model for Co-Array Fortran isiohost importance: CAF
users must know what is the expected behavior of their progrand compiler writers
must understand the safety conditions for automatic toansdtion of CAF codes. For
parallel languages, the memory model has to take into at@mmmunication and syn-
chronization.

As described in Section 1.1, CAF users can express remate (eaGETs) and remote

writes (or PUTSs) at language level, using the bracket nmdtr remote references. The
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CAF language, including our extensions described in Se@id, provides several syn-
chronization primitivessync_al | , sync_noti fy andsync_wai t . In Chapter 9, we
proposed eventcounts as a space-efficient extension toAkRes¢hchronization mecha-
nism.

In Section 3.1 we specified the semanticssginc_noti fy andsync_wai t with
respect td’UTs. Next, we describe in more detail the relation betweenlaymization and
communication. For the purpose of exposition, we will defime functionversion(z, P)

for each co-array variabbe and every process image P, using the following rules:

1. for every co-array, on every process image #rsion(x, P) = 0 at the start of

program execution.

2. for each local write performed by a process image P to dallpart of co-array,

version(x, P) = version(z, P) + 1.

3. for every remote write performed by a process image P ttota part of co-array

X on image Quersion(z, Q) = version(z, Q) + 1.

The functionversion(z, P) denotes the version number (or version) of the variable
on P. To indicate that a local write to co-arpayn image P has the effectrsion(z, P) =
n, we will the notationt = Vn. To indicate that a remote write performed by process image
P to process image Q has the effeetsion(z, Q)) = n, we use the notation[Q] = Vn.
Figure 10.1(a) shows the ordering between notifies Bdds. If process image Q
writes the co-arrax on P with version numbet, then sends a notify to P; after P executes
a matching wait it can only read from its local portionoé versionk with £ > n. k& might
be greater than because Q or some other process image might subsequeridynpene
or more writes tox on P after the synchronization point, that increase thearsumber
of x observed by P.
Figure 10.1(b) shows the ordering between notifies@ads. Process image Q writes
its local part of the co-array with version number., and then sends a notify to P; after

executing a matching wait, P will read from Q the valuexodnd is guaranteed to get a
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X[P]=Vn

ify(P
sync_wait(Q) sync_notify(P)

read x

(@)sync_not i fy andPUTs
P Q

x=Vn

sync_notify(P)
sync_wait(Q)

read x[Q]

(b)sync_noti fyandGETs

Figure 10.1: Relationship betwesgnc_noti f y/sync_wai t and remote accesses.

versionk with &£ > n. k might be greater than because Q or some other process image
might subsequently perform one or more local writeg tafter the synchronization point,
writes that will increase the version numbemxobn Q observed by P.

In bothsync _noti fy/sync wai t cases (a) and (b), P is guaranteed that Q has fin-

ished its local computation before the synchronizatiompand has finished all it6ETs
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X[P]=Vn

) ) advance_eventcount(e, P, i, 1)
wait_eventcount(e, i, 1)

read x

(a) eventcounts andUTs
P Q

X=Vn

advance_eventcount(e, P, i, 1)
wait_eventcount(e, i, 1)

read x[Q]

(b) eventcounts an@ETs

Figure 10.2: Relationship between eventcounts and rencosaes.

issued before callingync_not i f y. However, As not guaranteed th®UTs issued by Q
to other process images have completed.
Figure 10.2(a) shows the ordering between eventcount tpesaandPUTS. If process

image Q writes the co-array on P with version numbet, then advances biythe entryi
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X[P]=Vn

sync_all() ——  s\NC_all()

read x

(a) barriers andPUTs
P Q

x=Vn

sync_all() e—— syNC_all()

read x[Q]

(b) barriers andETs

Figure 10.3: Relationship between barriers and remotesaese

of eventcount on P; after P executes a matching wait it can only read frofoatd portion
of x a versionk with £ > n. k might be greater than because Q or some other process
image might subsequently perform one or more writes tm P after the synchronization
point, that increase the version numberafbserved by P.

Figure 10.1(b) shows the ordering between notifies@a@s. Process image Q writes
its local part of the co-array with version number, and then advances lythe entryi:
of eventcount on P; after executing a matching wait, P will read from Q thrigaf x

and is guaranteed to get a versiowith £ > n. k might be greater than because Q or
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some other process image might subsequently perform onew@ local writes to after
the synchronization point, writes that will increase thesien number ok on Q observed
by P.

In both eventcount cases (a) and (b), P is guaranteed that finisned its local compu-
tation before the synchronization point and has finishedss@BETs issued before advanc-
ing the eventcount. However,iB not guaranteed th&UTs issued by Q to other process
images have completed.

Figure 10.3(a) shows the ordering between barriers RldBs. If process image Q
writes the co-arrax on P with version numbet, and then sends a notify to P, P will then
read from its local portion ok a versionk with &£ > n. k£ might be greater than because
Q or some other process image might subsequently perfornoion®re writes tax on
P after the synchronization point, writes that will incredke local version number of
observed by P.

Figure 10.3(b) shows the ordering between barriers@als. Process image Q writes
its local part of the co-array with version number, and then synchronizes using a barrier
with P; P will then read from Q a versignof x and is guaranteed that> n. k£ might be
greater tham because Q or some other process image might subsequeridynp@ne or
more local writes ta after the synchronization point, writes that will incredise version
number ofx on Q observed by P.

In both barrier cases (a) and (b), P is guaranteed that Q hsisdhits local computation
and remote reads before the barrier. P is also guaranteecthate writes issued by Q to
other process images have completed.

There are several excellent reviews of memory consisterciefs [8,87,88,144]. Per-
vasive throughout memory consistency model research isseéote between theonstraints
imposed by any particular memory model and pleeformanceof programs written using
it. More constraints make programming easier, but genehallt performance. Fewer
constraints means that a programmer has to be more careéul wiiting code and using

the available communication and synchronization mechasidut the benefit is that of
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increased performance. We review several memory consistendels and then discuss
the memory model we propose for CAF.

Definition 9.1 In a strict consistencynodel, any read to a memory location X returns
the values stored by the most recent write operation to X][182

Definition 9.2. In a sequentially consistemhodel, the result of any execution is the
same as if the reads and writes were executed in some sexjuanaker, and the oper-
ations of each individual processor appear in this sequent®e order specified by its
program [129].

Definition 9.3 In aprocessor consisteneyodel, writes done by a single processor are
received by all other processors in the order in which theyeviesued, but writes from
different processors may be seen in a different order bgmifft processors [14, 89].

In the presence of synchronization variables, two more nmgecansistency models are
defined.

Definition 9.4 In aweak consistenayodel [75], the following properties hold:
1. Accesses to synchronization variables are sequentiafigistent.

2. No access to a synchronization variable may be perform&btall previous writes

have completed everywhere.

3. No data access (read or write) may be performed until elfipus accesses to syn-

chronization variables have been performed.

Definition 9.5 A release consistenayodel [88] uses locks on areas of memory, and
propagates only locked memory as necessary. The basidiopsacquireandreleasecan

be performed on locks. Release consistency is defined asvioll

1. Before accessing a shared variable, all previous acdwae by the process must

have completed successfully.

2. Before arelease is performed, all previous reads andswlibne by the process must

have completed.
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3. The acquire and release accesses must be sequentiaigtean

We formally define a memory consistency model for CAF as fedlo
Definition 9.6 CAF has the following synchronization mechanissgnc _al | ,
sync_team sync_notify, syncwait and eventcounts. Data movement and syn-

chronization interact in the following ways:

1. Writes performed by a process image to overlapping sextod its local co-array

parts are observed by that process image in the order in vileshwere issued.

2. Writes performed by a process image to overlapping sectad remote co-array
parts are observed by the destination process image in dee ior which they were

issued.

3. Ifaprocess image P sendsync_not i f y to process image Q, then upon comple-
tion on Q of the matchingync _wai t , all PUTs to co-array parts on Q and &ETs

of co-array parts on Q issued by P before issuingstyec _not i f y are complete.

4. If a process image P advances an eventcount on process {@apen upon com-
pletion on Q of the matchingai t _event count all PUTs to co-array parts on Q
and allGETs of co-array parts on Q issued by P before advancing the @wamitare

complete.

5. After execution of aync_al | , for any process image P, aRyJTs or GETs issued

by P before thesync_al | are complete.

6. After execution of @ync_t eam for any process image P, aRYTs orGETs issued

by P before thesync_t eamare complete.

This memory consistency model is weaker than that propostbe ilatest CAF draft [154].
The main difference is that in the proposed CAF standard gnglsonization operation

implies that all previou®UTs andGETs have completed, while in the memory model that
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we propose the primitivesync _not i f y andsync wai t lead only to pairwise commu-
nication completion. Our model enables the overlap of comoaition issued by a process
image P with different process images, thus decreasingsexbdata transfer latency. The
original CAF model contains critical sections; howevengtial programs using critical
sections will not achieve scalable performance due to thalzation that critical sections
require.

We can view thesync_not i fy,sync_wai t andsync_al | primitives as perform-
ing accesses to synchronization objects. Consideringriheriog and constraints we de-
scribed forPUT/GET and synchronization in CAF, the memory consistency modgbrwe
pose for Co-Array Fortran is weaker than both the weak arehsel consistency models.
For weak consistency, an access to a synchronization esiainplies that all previous
writes have completed. For release consistency, befoferpeng a release, all previous
reads and writes done by the process must complete. In be#scthe achieved effect
of a synchronization operation by a process is that of a feambech completes all writes
performed by the process. In the case of a distributed mesy@tem such as a cluster,
with shared memory located on several cluster nodes, tlghtunnecessarily expose data
transfer latencies. Consider the case where a process pnagiates a bulk remote write
to shared data residing on a remote node, then initiateskar&unote write to shared data
residing on a second node, after whicimvokes a synchronization operation. Upon the ex-
ecution of the synchronization, both writes must completesn it might more profitable to
wait first for the completion of one of the writes, perform smoomputation, then wait for
the completion of the second write. For CAF, we propose taaise synchronization op-
erationssync_not i fy andsync_wai t have the effect of pairwise completion of com-
munication. We chose this memory model because it is condtcihigh-performance, so
CAF programs can overlap data transfers to different imageghus reduce exposed data
transfer latency.

The CAF memory model is weaker than the Java memory consisteadel [90, 131].

We do not provide any guarantees for CAF programs that codtatia races. In Java, ac-
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cesses to shared variables can be protected with locksy sigimchr oni zed methods.
The synchronization model of CAF does not contain locks,iaadly enables trivial shar-
ing of data. Dotsenko [72] considers locks for more geneoakdination. A benefit of
the Java memory model is that a programmer can control sexésshared data at a finer
granularity level in Java than in CAF, by choosing on whichrsld object to operate. In
CAF, a call tosync_noti fy from process image P to process image Q would lead to
pairwise completion of alPUTs issued by P to Q, even if tH&JTs write to separate co-
arrays. A recent refinement of the Java memory model [13}iges new guarantees for
operations usingol at i | e variables: when thread A writes to a volatile variable V, and
thread B reads from V, any variable values that were visiblé &t the time that V was
written are guaranteed now to be visible to B. The CAF modelesker than the Java
memory model. If process image P writes the co-aran Q with version numbet, and
then sends aync_not i fy to process imag&, then process image is not guaranteed
to read a versiok of x on Q such that > n, as shown in Figure 10.4. However, if process
image P writes the co-array on Q with version numben, then sends aync_noti fy
to process image Q, Q performs a matchsnygic _wai t , followed by async _noti fy
to R, then R, upon execution of a matchisgnc_wai t from Q, is guaranteed to read
a versionk of x on Q such that > n. k& might be greater than because Q or some
other process image might have subsequently performedramer@ writes tax on Q. A
graphical representation of this scenario is shown in Ed.4(b).

For the CAF memory model that we propose to enable data galeéncy hiding, it
is crucial that thesync_not i f y primitive be non-blocking. Isync_noti fy is non-
blocking then a process image P can issue a non-blodkiigto process image Q, fol-
lowed by async_noti fy to Q, and immediately afterwards issue a non-blockrg
to R, followed by async_not i fy to R. The net effect is that tHéUTs to Q and R may
overlap, which reduces the exposed data transfer lateingynic _not i f y were blocking,

then it would make it harder to hide data transfer and synchabion latency.
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X[Q]=Vn

sync_notify(R) \

T~

(a) R is not guaranteed to read a versioof z[Q)] with k£ > n.
P Q R

sync_wait(P)

read x[Q]

X[QJ=Vn

sync_notify(Q) \

sync_wait(P)

sync_notify(R)

~~

(b) R is guaranteed to read a versibof z[Q)] with & > n.

sync_wait(Q)

read x[Q]

Figure 10.4: Relationship between synchronization andteraccesses among multiple

process images.

10.2 Implications of the CAF Memory Model for Communication Op-
timization

Based on the CAF memory model that we described, we can iaf@ral rules limiting

compiler-performed motion of code performing remote asesanless analysis proves
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that the code motion does not result in conflicting concurogrerations on shared data

e For any process image PUTs to remote co-array data associated with P cannot
move after async_noti fy to P unless it can be proven it is safe; otherwise, the

destination process image might read a value older thanthevatten by thePUT.

e PUTs andGETs cannot move before a barrier. In the case &1 from process
image P to co-array on process image Q, the barrier completion might indicak to
that it is safe to perform thUT, e.g., Q is done reading its local part of co-arkay
Moving thePUT before the barrier would then lead to a race condition. Ircdse of
a GET by process image P of co-arr&yon process image Q, the barrier completion
might indicate to P that it is safe to perform tBET, e.g., Q is done writing its local
part of co-arrayx. Moving the GET before the barrier would then lead to a race

condition.

e PUTs andGETs cannot move after a barrier. In the case BLA from process image
P to co-array on Q, the barrier would indicate to Q that tREIT issued before the
barrier has completed, and it is safe to read its local paxt dloving thePUT after
the barrier might lead to a situation where ®idT is not completed, but Q assumes
that it is completed, accesses its local co-array paxtafd reads a value older than
the one it it supposed to read. In the case GE2 by process image P of co-array
X on Q, the barrier would indicate to Q that tRE&T issued before the barrier has
completed, and it is safe to write its local partofMoving theGET after the barrier
might lead to a situation where ti&ET is not completed, but Q assumes that it is

completed, writes its local co-array partofind creates a race condition.

e Foraco-array, an access written &g p] , even ifp corresponds to the local image,
is treated as communication. However, a CAF runtime libisfgee to recognize this
case and implement it using a memory copy. In either caseplation is enforceable

through synchronization statements.
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Based on the following observations, we can make a consesvauirement for cor-
rectness of CAF transformations: in the absence of detaitedysis of local and remote
data accesses both before and after communication, fonsféranation of data race free
programs to be correct, it should not move communicationriesdr after synchronization

points, and it should not reorder remote accesses to the s@mery locations.

10.3 Dependence Analysis for Co-Array Fortran Codes

In this section, we present a strategy for performing depeod analysis of Co-Array For-

tran codes. Dependence analysis for two Fortran 95 arrayertes involves analyzing

the set of pairs of corresponding subscripts, generatingt afsconstraints that all need

to be satisfied in order to have a dependence, and analyzthgtitonstraint set can be

solved within the context of the pair of references [17] (@ample, when one or mul-

tiple loop indices are involved in the subscript pairs, aditohal constraint is that each

loop index can have only the values specified by its corredipgnoop header). To per-

form dependence analysis for local and remote co-arrayartes, we propose to con-
sider the set of corresponding pairs of subscripts for Idoaknsions, but to augment that
set with corresponding pairs of co-subscripts when preséhis approach enables CAF
compiler writers to leverage existing dependence anatgsisniques for sets of subscript
pairs. Once dependence analysis results are availablegsen a correctness theorem for
remote access reordering transformations. Our strategyswo the presence of the user-
defined co-space extension to CAF proposed by Dotsenko W¥2]review the co-space

extension in Section 10.3.1, describe our dependencesasatyategy in Section 10.3.2,

and present a correctness theorem for dependence-baseduoaration transformations

in Section 10.3.3.

10.3.1 Co-space Types and Co-spaces Operators

To aid compiler analysis and enable users to organize ppagegyes, Dotsenko [72] pro-

posed extending CAF witbo-spacesThe co-space concept was inspired by MPI commu-
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nicators; it enables users to organize process images liatgpg, with each group poten-

tially having its own topology. There are three types of paces:

e Cartesianco-spaces correspond to MPI Cartesian communicatorsgpsdamages
are organized into a Cartesian multi-dimensional grid. gRbors are referenced
using thenei ghbor operator. Consider a Cartesian co-spacogith £ dimen-
sions, and a process imagedvith the Cartesian coordinatés, , ps, ..., px): then
neighbor(c, 1,12, ..., i), Wherei;, j = 1,k are integer expressions, refers to the
process image with the coordinaigs + i1, p> + ia, ..., pr + i) Within the Cartesian

CO-space:.

e graphco-spaces correspond to the MPI graph communicators. Haclkegs image
has a list of successor process images, specified at co-sggat®n, such that there
is a directed edge from the current process image to eaclessmcprocess image
in the list in the graph co-space. Consider a graph co-spaoe a process image P
within ¢; to refer to itsk-th neighbor in the list of adjacent process images, P uges th

operatomeighbor(c, k), wherek is an integer expression.
e groupco-spaces simply impose an order relation on a set of procegges; to refer
to thek-th process image in the group co-spagene uses the operateeighbor(c, k).
10.3.2 Dependence Analysis Using Co-space Operators

Let’s consider two co-array references for which we wantadgrm dependence analysis.

Each reference can be one of the following:
¢ local co-array reference

e co-array reference to a remote image specified usingdfyghbor operator within a

Cartesian, graph, or group co-space
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We need to consider six cases. For brevity, we us® refer to< iy, is, ..., 7, >, j tO
refer to< ji, ja, ..., ju >, T torefer to< ry, 7o, ..., ., >, andq to refer to

< {41,492, -, qn >.

1. alocal reference(?) and a local referenae(?). We consider the set of subscript

pairs< i;, j; >, = 1, k for dependence analysis.

2. alocal reference(?) and a remote referene&?)[neighbor(c, 7)] wherec cor-
responds to a Cartesian co-space. We consider the set afripilpgirs< i;, j, >,

l=1kand< 0,rs >, s = 1, m for dependence analysis.

3. alocal reference(?) and a remote referean)[nez’ghbor(c, r)] wherec corre-
sponds to a graph or group co-space. We consider the setsifrquttpairs< i;, j; >,
[ = 1, k for dependence analysis, and assume thatthghbor operator can induce

a dependence in the processor space.

4. two remote references using Cartesian CO-Spal{ez)[neighbor(cl, 7)] and
a(?)[neighbor(c%?)]. If ¢; # co, then we consider the set of subscript pairs
<1, >, 1 =1, k, for dependence analysis, and assume that there is a deygende
within the processor space. df = c¢;, then we consider the set of subscript pairs

<i,5 >, 1=1kand< g, s >, s = 1, m for dependence analysis.

5. two remote references using graph or group co-spa(:gs) [neighbor(c1, q)] and
a(?)[neighbor(cz,r)]. If ¢; # co, then we consider the set of subscript pairs
i, ;1 >, 1 = 1,k, for dependence analysis, and assume that there is a deende
within the processor space. df = c¢;, then we consider the set of subscript pairs

<1, 75 >, =1 kand< ¢,r > for dependence analysis.

6. a remote reference using a Cartesian co-spf(ia)e)[...] and a remote reference
a(?)[...] using a graph or group co-space. We consider the set of spbpeirs
<1, >, 1 =1k, for dependence analysis, and assume that there is a deygende

within the processor space.
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With these rules, we define the following types of dependeinmoslving co-array ac-
cesses:

Definition 9.7 Dependences between local co-array accessdsaaledependences

Definition 9.8 Dependences involving at least one remote co-array referamecross-

processor dependences

10.3.3 Discussion

If dependence analysis determines that remote co-arrayerefes are engaged in true,
anti-, or output dependences, any code transformation pneserve those dependences to
avoid violating the CAF memory consistency model.

One special case is when the local co-array image is refedemsing bracket notation
with an expression that cannot be analyzed at compile timeh&Ve two options: either
consider the possibility of dependences between locabaeseand remote accesses, or pass
the compiler a special flag to inform it that references tal@arts of co-arrays are always
specified with bracket notation. Such a requirement is natrarasonable one, since the
two-level memory feature of CAF leads to the users expjidifferentiate between local
and remote accesses.

We recommend that CAF users employ the neighbor operatbrositstant arguments
whenever possible when referring to remote co-arrays. THads to code that a CAF
compiler can more readily analyze and optimize than the loaeuses general expressions
for co-subscripts.

We can use dependences and the proposed CAF memory coagistedel to guide
caf ¢ automatic transformations. Allen and Kennedy [17] defirerdering transforma-
tions as follows:

Definition 9.9 A reordering transformatioms any program transformation that merely
changes the order of execution of the code, without addiragtating any effects of exe-
cution of statements.

A CAF compiler can perform reordering transformation, dsbaemote reference re-
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ordering transformations, defined as follows:

Definition 9.10A remote reference reordering transformati@orders remote accesses
with respect to their original statements. In the case ohaote read, the remote read is
performedbeforethe original statement, the off-processor values are savatdemporary,
and the temporary is used instead of the original remote reflence. In the case of
a remote write, the value to be written is saved in a tempop@rg the remote write is
performedafterthe original statement.

Theorem 9.1 A CAF transformation that performs statement reorderind @mote
reference reordering does not change the meaning of a pnogithout data races if it does
not move remote accesses before or after synchroniza@bensénts and if it preserves
local and cross-processor dependences.

Allen and Kennedy [17] prove by contradiction that transfations that perform state-
ment reordering without changing dependences preservad¢haing of a program. Con-
sider a program with the statemeig 5, ..., .S,,, such that each statement reads values
produced by previous statements and in turn outputs nevesaldonsider a permutation
S1, S5, ..., S), of the program statements induced by a reordering transfitom Assume
that the meaning of the program after reordering is changed letS; be the first state-
ment which produces a different output. This is du&taeading a different input value

than in the original program execution. This can happenreeticases:

1. A statemeng; writesx with the value that; was supposed to readter S; reads it.
This violates a true dependence, and contradicts the assumtipat no dependence

is violated.

2. A statementS! that in the original program execution was writirgafter S;, now
writes x before S, reads it. This violates an anti-dependence, and contsathet

assumption that no dependence is violated.

3. A statementS; writes x before S, with the value thatS;, is supposed to read, but

a statement’, that in the original program execution was writingoefore,S; now
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writes it afterS.. This violates an output dependence, and contradicts thergsgtion

that no dependence is violated.

To extend that result to CAF, notice that each processopgmigences are preserved,
and we are left to prove that after transformations, eackgasor reads/writes the same
data when executing remote accesses. By performing reraf#ence reordering with-
out crossing synchronization statements, we are guachmbeperform the same remote
accesses as in the original program. For a remote read ingagonofree of data races,
the remote data is already available after some prior symikaition point, otherwise the
original program contained a race condition; this impliest tafter remote read reordering
the local process fetches the same remote value. For a remibéeto process image P,
note that there must be a synchronization staterSehat followed the remote write and
guaranteed that the write was delivered?ldoecause in a data race free program all con-
flicting accesses are separated by synchronization. Siterelze reordering of the remote
write no synchronization statements are crossed, the samshr®nization statemeftsig-
nals the completion of the remote write to P, so P reads the sasult after the execution
of its matching synchronization statement. Therefore stheement and remote reference

reordering transformation preserves the meaning of a datafree program.

10.4 Dependence-based Vectorization of CAF Codes

CAF codes with remote accesses can be analyzed using extsmgiexisting dependence
analysis techniques and optimized by a CAF compiler. Ingbition, we describe a simple
dependence-based vectorization algorithm, prove itsectress, present transformation
details, and then discuss what steps are necessary torftatloe communication vector-
ization to various target architectures.

We review several terms used in the algorithm.

Definition 9.11 A control-flow graph(CFG) is a directed graph representation of all
possible paths that can be taken during program executibe.gfaph nodes correspond

to basic blockswhich are straight line sequences of code without any junippe graph
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procedure VectorizeComn(procedure P)
scalarize array sections references [17]
assemble the set of subscript pairs for dependence an@gsiSection 10.3)
perform dependence analysis [17]
determine the set of outermost loapsopSet
that do not contain synchronization statements.
foreach loop L, in LoopSet
VectorizeLoof oyt , Lout)
end
perform procedure splitting for all temporaries createdrdythe vectorization process
and used with CAF array syntax expressions (see Section 5.1)

Figure 10.5: The driver procedure for the vectorizatioroathm, VectorizeComm

edges correspond to jumps in the program. The CFG has tw@abspedes, thentrynode,
through which all control flow enters the graph, andekignode, through which all control
flow exits the graph.

Definition 9.12 A CFG nodey postdominates a CFG nodef every path fromz to the
exit node passes through

Definition 9.13 A statemeny is said to becontrol dependernin another statemenntif

1. there exists a nontrivial path fromto y such that every statement£ x in the path

is postdominated by.
2. z is not postdominated by.

Definition 9.14 A control dependence graps graph that represents the control depen-
dences between CFG blocks.

Definition 9.15For each loof., we define itdoop nesting levelevel(L), as follows
1. level(L) = 0iff =3L' such thatl C L'.

2. level(L) = n + 1iff L' such thatevel(L') = nandL C L’ and—3L” such that
LcL'cl.
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procedure VectorizeLoofl., L)
foreach outer loopL; inside L itself
VectorizeLoofl;, Loyt)
foreach remote referenc&e f in the body ofL
Lnazdep = maz{level(L")|L’ carries a dependence on the statement
containingRef}
if (Ref is a remote read)
Lyect(Rel) = maz(Lmazdep + 1, level(Loyt))
else
Lninctridep = min{level(L')|L’ such thatRe f € L’ and the statement
containingRef is not control dependent on any non-loop header statemdri§in
Lvect(Ref) = mafC(Lmaxdep + 17 level(Lout)a Lminctrldep)
end
end
foreach referenceRef such thatl .. (Ref) = level(L)
call AllocateTemporariesAndRewriteRefere{icel ,..:(Ref), Ref)
call GenerateRemoteAccessC@deL ye..(Ref), Ref)
end

Figure 10.6: Thé/ectorizeLoogprocedure.

function ClassifyCAFReferen€®, L., Ref)
Let L), ..., L} be the loops containinge f, such thatevel (L]) > Lyee, fori =1,k
Let Ly, Lo, ..., L, be the loops with index variables used
in the subscript expressions f&e f.
Let L; 1, L; u» be the lower bound, upper bound for logp
Let L; sirides Liidz € the stride, loop index variable for lodp
if eachL; ;4 is used in exactly one affine expression subsetift; ;4. + 5
and eacho; andg; are constant w.r.tL}, L), ..., L
return AFFINE
else
return NON_AFFINE
end

Figure 10.7: The proceduf@assifyCAFReference

We present the driver procedure for our dependence-basechanication vectoriza-
tion algorithm,VectorizeCommin Figure 10.5. The algorithm first scalarizes array sectio
references, e.g. transforms Fortran 95 array sectionereges into loop nests, as described

in Allen and Kennedy [17]. Next, it assembles a set of supsgairs, for both local di-
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mensions and for co-dimensions, as described in Secti@ After that, it performs data
dependence analysis of corresponding subscript pairg tsthniques described in Allen
and Kennedy [17].

To computeevel (L) for every loop, we would perform a recursive preorder traser
of the control dependence graph, and assign to each loogr ¢fth nesting level O, if it
does not have any loop ancestors, or the nesting level ofgheest loop ancestor plus 1.

The vectorization algorithm determines the set of outetriomgs that do not contain
synchronization statements. Formally,

LoopSet = {L|L does not contain any synchronization statements-aiid such that
L C L' andL’ does not contain any synchronization stateménts

To determineLoopSet, we would construct the control dependence graph, perform a
postorder traversal of the graph, and mark all the loopsabiatain synchronization state-
ments. Next, we would perform a preorder traversal of th@lgrand upon encountering
a loop which is not marked we would add it k@opSet and stop traversing the successors
of that loop in the control dependence graph.

Next, VectorizeComrmvokes the routin&ectorizeLoogor each loop inLoopSet. The
proceduré/ectorizeLoogor a loopL is presented in Figure 10.6. For each remote co-array
referencele f in the statements immediately insidewe first determine the loop nesting
level where it can be vectorized. For both read and writereeieges, we defing, 4., as
the maximum nesting level of a loop carrying a dependencéerstatement containing
Ref. For remote reads, the loop nesting level at which vectbaaacan be performed
iS Mmax(Lmazdep, level( Loy ), WhereL,,, is the nesting level of the loop ihoopSet that
containsL. For remote write accesses, we also deterning ..,iqep, the minimum nesting
level of a loop such that the statement containfgf is not control dependent on any
non loop header statement insideé The loop nesting level at which vectorization can
be performed is themaxz(Liazdep, level(Lout), Liminctridep)- VectorizeLoognvokes the
proceduréAllocateTemporariesAndRewriteRefereraescribed in Figure 10.8, to allocate

temporaries for data and possibly indices and to rewriteeference. Finally, it invokes
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procedure AllocateTemporaries AndRewrite Re ference(L,Lyect, Ref)
Let L), ..., L} be the loops containinge f, such thatevel (L]) > Lyect, fori =1,k
if the co-array variable and all the subscriptsieff are not written inside.}, ..., L},
declare a buffetemp and replacere f with a reference to the buffer,
normalizing the indices
else
Let Ly, Lo, ..., L, be the loops with index variables used
in the subscript expressions e f.
Let L; i, L w1 be the lower bound, upper bound for lodp
Let L; stride, Li id D€ the stride, loop index variable for lodp
switch ClassifyCAFReferen¢é, L., Ref)
caseAFFINE
declare a temporary bufféemp of shape
(1 (Lo — L)/ L stride + 15 s 1t (Lpub — Lpav) / Ly stride + 1)
replace the referencRe f with temp
replace each subscript L; ;4 + 5; With (L; jaz — Li )/ Li stride + 1
caseNON_AFFINE
ns=number of subscript expressions using index variableseofdopsL,...,L,
declareitemp with shapel : n, ..., (Li wp — Li )/ Li stride + 1, ...
insert a loop nesk .., immediately before.,...;, duplicating
the loop headers afy, ..., L, to fill in itemp
for s =1, ng
synthesize assignment in the innermost loop.gf,,,
to itemp(s,..., (Liide — Liw)/ Li,stride + 1, -..) Of
subscript expression numbefrom Re f
end
declare a temporary bufféeemp of shape
(1: (L1wb — L1p) /L1 stride + 15y 12 (Lpub — Lpv) / Ly stride + 1)
repIaceRef by temp((Ll,idw - Ll,lb)/Ll,stride +1,.., (Lp,idw - Lp,lb)/Lp,stride + 1)
end switch
end if

Figure 10.8: The procedurdlocateTemporariesAndRewriteReference

the proceduré&enerateRemoteAccessCpsleown in Figure 10.9, to synthesize code that
accesses the remote data.

The procedur€lassifyCAFReferengpresented in Figure 10.7, determine whether the
reference is affine or non affine. Consider the lobpsLs,.., L, with indicesL1 ;4,, L2 idz
..., Ly iq; Used in the subscript expressions for the remote refer@a¢e For Ref to be

affine, each subscript must be an affine expression of exaotyof loop index of the
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enclosing loops, such asL, ;4. + 3;, where all variables used in the expressions,aind
B; are not written inside any of the loogs, L,, .., L,, fori =1, p.

The procedurdllocateTemporariesAndRewriteRefergngl@own in Figure 10.8, allo-
cates temporaries for data and possibly indices and resathiee reference. Considér,,
L, ..., Lj, the loops that contain the referenBe f, with a nesting level greater or equal
than the level at which vectorization can be performed. éf¢b-array variable and all the
variables used for subscript expressions Rarf are not written inside the loops;, for
1 = 1, k, then we declare a bufféeemp and replaceRef with a reference téemp. The
procedure would also normalize the indicesofip. Otherwise, we consider the loops,
Ly, ..., L, such that their indices, ;q4;, L2 iz, ---, Lp,idz @re used in the subscript expression
for Ref. We denote the lower bounds of the loopsiy,, fori = 1, p, the upper bounds
by L; ., fori =1, p, and the loop strides b¥; 4., fori = 1, p.

AllocateTemporariesAndRewriteReferemv@kesClassifyCAFReferende determine
if Ref is affine or non affine. If the reference is affine, then the wezation algorithm
will use a regular CAF array section remote reference to sstlee remote data, that
will be converted into communication code as described icti®e 4.3. The procedure
AllocateTemporariesAndRewriteReferenleelaresemp, a temporary buffer for the off-
processor data, of shape: (L u—Liw)/ L1 strige+1, 1 2 (Low—Law)/ Lo stridet+1, ..., 1
(Lpuv — Lpiv) / Ly strige + 1). Next, the referenc&ef is replaced with a reference temp,
and each affine subscript L; ;4, + 3; will be replaced with its correspondent subscript
within temp, (L jae — Liw)/ Li strige + 1.

If the reference is non affine, then we will use an Active Mgsstp perform the re-
mote access. Active Messages [190] (abbreviated AM) werewed in Section 2.1.2;
a sender issues a message containing an AM handler idemtifterdata. On the re-
ceiving side, an AM dispatcher first determines the AM handdsponsible for process-
ing the message, then invokes the handler and passes it $sageedata. In the case
Ref is non affine, the current process image would collect thallowlices for the re-

mote co-array data and send them in an AMlocateTemporariesAndRewriteReference
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procedure Generate Remote AccessCode(L, Lyect, Ref)
Let L), ..., L} be the loops containinge f, such thatevel(L]) > Lyeet, fori =1,k
if (Ref is aremote read reference)
if the co-array variable and all the subscriptsieff are not written insidd}, ..., L},
insert a Co-Array Fortran statement to assign the remotesval
to temp immediately before 100+
else
Let Ly, Lo, ..., L, be the loops with index variables used
in the subscript expressions f&e f.
Let L; 1, L; u be the lower bound, upper bound for logp
Let L; strides Liidz € the stride, loop index variable for lodp
switch ClassifyCAFReferen€é, L., Ref)
caseAFFINE
insert assignment of the remote reference
Ref( y O zlb+ﬁz a; zub"i'ﬁz a; zstridea'--)
into temp( 1: (Lz,ub z,lb/Lz,strzde +1, )
immediately before the 100p ..
caseNON_AFFINE
generate an AM handler to pack the remote referdReg into temp
insert AM handler invocation beforg,..:, passingitemp
end switch
else
if the co-array variable and all the subscriptsieff are not written inside.}, ..., L},
insert a CAF statement that assigasp to the remote section immediately after

else
switch ClassifyCAFReferen¢é, L., Ref)
caseAFFINE
insert remote assignment infe f (..., i L; iy + Bi : &L up + Bi © ®iLi strides ---)

fromtemp(..., 1 : (Ljup — Li,lb)/Lz,stmde + 1,...) immediately afterLUect
caseNON_AFFINE
generate an AM handler to unpatknp into the remote referencRe f
insert AM handler invocation passiritemp andtemp immediately aftetl ..
end switch
end if

Figure 10.9: The procedufgenerateRemoteAccessCode

determines the number of subscript expressions that usledpendex variabled; ;..

L, .4, denoted byn,. Next, it allocates a temporary to hold the indicégmp, of
shape(l : ns, (1 : (Lyw — Liw)/Listricze + 1,1 0 (Lows — Low)/Lastride + 1, ..., 1
(Lpub — Lpiw)/ Ly striae + 1). To fill itemp with the values of the local indices fdte f,



152

a loop nestL;..,, is inserted before the loop at level..,, duplicating the loop headers
of the loopsLy, ..., L,. In the innermost loop of;..,,, we synthesize an assignment
for each of then, subscript expression, assigning the value of ¢tk subscript expres-
sion toitemp(s, (L1,ige — L1w)/L1stride + 1, (L2iaw — Low)/Lostride + 1, -y (Lpiae —
L,w)/Lystride + 1). Next, the algorithm declares and allocates a temporargibtafnp of
shape(l : (Liu — Liw)/Listrize + 1, ..s 1+ (Lpwp — Lpip)/ Ly stride + 1), and replaces
Ref by temp((L1,iax — L1w)/ L1 stride + 1, -y (Lp,ide — Lpv)/ Lp.stride + 1)-

The procedurégsenerateRemoteAccessCpdbeown in Figure 10.9, synthesizes code
that accesses the remote data. To perform the remote agcessean use either array
section CAF references, for whicaf ¢ generates communication code as explained in
Section 4.3, or use Active Messages. For an active mesdageptnpiler needs to syn-
thesize the handler of the AM and to insert an invocation ef AM into the generated
code. Considet’, Li, ..., L;. the loops that contain the referenBef, with a nesting level
greater or equal than the level at which vectorization capdséormed.

For remote read references, if the co-array variable anith@lariables used for sub-
script expressions fake f are not written inside the loops, for ¢ = 1, k, then we insert a
CAF GET of the remote data inttemp, immediately before the enclosing loop at nesting
level L,..;. Otherwise, similar to the proceduddlocateTemporariesAndRewriteReference
we consider separately the cases of affine and non affinenefes. If a reference is affine,
then we synthesize a CAF remote read reference e« Ly + 51 : cn Ly + B
1L strides - OpLpin 4 Bp - pLipup + B+ p L strige INEO temp((Lup — Law) /L stride +
1), .oy (Lpus — Lpwn) /Ly strige + 1) immediately before the enclosing loop at nesting level
L. If the reference is non affine, then we synthesize an AM tartdlpack the remote
referencelRe f into temp, then insert an invocation of the AM handler immediatelydoef
the enclosing loop at nesting levil..;.

For remote write references, if the co-array variable ahthalvariables used for sub-
script expressions fake f are not written inside the loops, for ¢ = 1, k, then we insert a

CAF PUT into the remote data frotemp, immediately after the enclosing loop at nesting
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level L,..;. Otherwise, similar to the proceduddlocateTemporariesAndRewriteReference
we consider separately the cases of affine and non affinenefes. If a reference is affine,
then we synthesize a remote write CAF referencég (a1 L1 + 51 @ arLyw + 01 -
1Ly strides - OpLpin+ Bp - 0pLip w4 Bp + p Ly strige fromtemp((Laupy — L) / L1 stride +

1), ooy (Lpub — Lpap)/ Ly strige + 1) immediately before the enclosing loop at nesting level
L. If the reference is non affine, then we synthesize an AM karndlunpackemp into

the remote referencBef, then insert an invocation of the AM handler immediatelenft

the enclosing loop at nesting levg|,..;.

10.4.1 Dependence-based Vectorization Correctness

Theorem 9.2The transformation performed by the routiviectorizeComns correct for

data race free programs.

Proof: Any remote access references introduced bywaorizeLoogransformations
would be inserted inside a lodpfrom LoopSet or immediately beford. or immediately
after L. Sincel does not contain any synchronization statements, in eashroa

communication statements would be moved past synchraoizabints.

The routineVectorizeLoogloes not hoist a remote read or write refereReg past the
level of a loop which carries a dependence on the statematdiotng Re f, So it does not
reverse any dependence.

We have proven that the transformatigactorizeComndoesn’t move any remote ac-
cesses past synchronization points and that it presengesndences. According to Theo-
rem 9.1, the transformatiovectorizeCommdoes not change the meaning of the code for a

data race free program. Thus, the transformation deschp&egctorizeComms correct.

10.4.2 Transformation Details

Temporary buffer management. A question relevant for performance is how temporary

buffers are to be allocated and managed. For performaneemn#mory for temporary
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buffers should be allocated by the communication librarytaees fit, e.g. perhaps in
pinned physical pages on a Myrinet cluster. The naturallagg level representation for
temporary buffers is Fortran 95 pointers. However, the ddeéodran 95 pointers might
degrade local performance, because Fortran 95 compileghtroonservatively assume
pointer aliasing, and inhibit key optimizations for scgt@rformance.

As shown in Chapter 6, procedure splitting is an importaninegation for local per-
formance. It transforms pointer references into array ments, which conveys to the
back-end compiler the lack of aliasing, the fact that thayais contiguous, and the shape
of the local co-array. To get the same benefits for vectaamantroduced temporaries, af-
ter applying vectorization, we could perform procedurétspyl and pass array temporaries
as arguments to an inner routine as well.

Vectorization temporaries suitable for procedure spliftare those used in Co-Array
Fortran array section assignment; their shape should &sxpressed only by means of
specification expressions with regard to the current pnaeedA more aggressive transfor-
mation would be to outline the code between the allocatiehdmallocation of a temporary
into a procedure, invoke that procedure and pass it the tearipe as array arguments.

Active Messages buffer managementFor efficiency reasons, we need to pass to an
AM a vector of indices, in the case of subscripts using aredgrences, or perhaps coeffi-
cients, in the case of multiple affine expressions with ressfgethe loop variables. Clearly
we want to avoid performing unnecessary data copying amgjusiltiple messages. The
solution we propose is to determine the size of the storagessary to hold the subscript
information, allocate a vector of length sufficient to hahe tsubscripts, and then collect
the necessary subscript values in that vector. FGE®S, it suffices to send the vector of
subscript triplets for the local dimensions®é f, in order to to collect the remote data into
a return buffer. For &UT, we need to transmit both the subscript values and the hghtt
side data for the remote write statement. One alternatiteealiocate two separate buffers,
one for subscript values and one for off-processor datasuhime layer would then copy

them into contiguous storage and then invoke one activeagesshis leads to extra data
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doubl e precision A(1l:100)] *]
i nteger B(1:100)

doubl e precision C(1:100)
A(B(1:n))[p]=C(1:n)

(a) Example ofPUT using array references for subscripts.
B(1:n) C(1:n)

COMMBUFFER | | | = | B | | sreevvssssnsnn

padding

(b) Storage management for subscript values and right-bialeddata.

Figure 10.10: Buffer management for remote writes subtcapd right-hand side data;
padding is used so that the targets of subscript and datéepeeach have a 64-bit align-

ment.

copying. A more effective solution is to determine the sizthe storage necessary to hold
the subscripts and the right-hand side data, then allodauffexr large enough to hold both
the indices and the off-processor data, and set up the peiftteindices and data to use
this common storage. To preserve data alignment we mustadi@ padding zone between
the subscripts and the data, so that the targets of indexatadgdinters each have a 64-bit
alignment. For the code fragment presented in Figure 18)10{e storage for the indices
B(1: n) and the right-hand sidg( 1: n) would be managed as shown in Figure 10.10(b).
Active Message Handlers.Active Messages are flexible means of realizing commu-
nication, however they might be less efficient than Remot@ Memory Access (RDMA)
on certain communication fabrics. For performance, it efgnable to express the vector-

ization using Fortran 95 array sections without indirectorays for subscript expressions,
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since then a communication library can use an RDMA transfad, only when this is not
possible we would use Active Messages to perform commuaitaectorization. For each
vectorized communication event we would generate an AMaation, inserted before the
loop L...; for remote reads and after the lodp..; for remote writes. We must also gener-
ate an active message handler.

Next, we present the AM handler generation examples for yywes of communication
patterns.

Subscripts using indirection arrays. Consider the following loop:

The co-arrayA on the remote imageis accessed using the subscript ve&goas shown
in Figure 10.11(a). We present the code we would generatbesdurce process image
in Figure 10.11(b). To finalize the put, the remote processgenwould invoke the active
message handler shown in Figure 10.11(c).

Subscripts using multiple affine expressions of the loop inek variable. Consider
the loop presented in Figure 10.12(a). The co-akan the remote image p is accessed
on a diagonal subsection. After vectorization, we wouldegate the code presented in
Figure 10.12(b). To finalize thRUT, the remote process the image would invoke the active

message handler shown in Figure 10.12(c).

10.4.3 Discussion

The procedur&ectorizeCommmight not efficiently handle control flow inside a loop body.
For remote reads which are control-dependent on a condltexpressionyectorizeComm
would prefetch a remote section of size proportional to dlepltrip count. This might lead
to unnecessary communication. HowewargtorizeComrmhibits vectorization at the level
of a loopL for remote writes which are control dependent on statemesidel. Another
potential solution would be to detect computation slicesessary to determine the remote
elements which are accessed, as described ireDal§64]. The best choice is application
dependent.

Our vectorization algorithm can be extended immediatelyddk correctly in the pres-
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ence of natural loops, e.g., loops written using THEN- ELSE and GOTO statements
instead of using structured programming constructs suéCdsops orFOR-loops. Nat-

ural loops can be identified by analyzing the control-flowphr§15], and we would not
vectorize a referencBef past a natural loop if it carries a dependence on the statemen
containingRef .

For the sake of exposition, we presented an algorithm thébmeed vectorization of
remote accesses for co-arrays of primitive types. The dlgorextends immediately to
co-arrays of user-defined types without pointer fields, analbcatable co-arrays of both
primitive types and user-defined types without pointer fiel@he algorithm can also be
applied to co-arrays with allocatable components, whesddlget of the vectorization is
represented by multiple references to a structure fieldiofipve type or user-defined type
without pointer fields. For example, referencest®( 1) ,a%( 2) ,...a%b( n) could be
vectorized intaa%b( 1: n) , wherea is a co-array and is an allocatable component.

The communication vectorization algorithm would furtheed to address architectural
constraints. One constraint is buffer size on nodes withtéidhmemory. If full communi-
cation hoisting requires more memory than it is availabllantinstead of full hoisting of
communication we need to first strip mine the loop which irefuthe vectorization, then
perform full communication hoisting in the newly createdean loop. A similar method
addresses another architectural constraint: the maxinzemno$ the message that can be
injected into the communication network. If we try to sendyJjarge messages, then the
software communication layer will send the message in pies#h a delay between each
piece. This would expose communication latency, which isdesirable. The solution is
again to strip mine the loop inducing communication vee@tion, such that the hoisted
communication size is smaller than the maximum messagascpted by the communi-
cation interconnect. In both cases, determining the ap@i@psize of the communication
granularity would be machine-dependent and could be peddiin a self-tuning step upon

installation of the compiler on that system.
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10.5 Dependence-based Communication Optimizations of CAF

In this chapter, we presented a memory consistency modeCAdt, extended existing
dependence analysis techniques to work with both local antbte co-array references,
and presented a dependence-based communication vettorialgorithm. As explained,
this transformation does not move communication statesgamt synchronization points.

Dependence-based communication optimization includeertt@n just vectorization.
We mention next several cases where dependence analystsecased to improve the
performance of CAF codes without moving communication ggethronization points.

One opportunity is to reorder communication statementhiabldothPUTs andGETs
are initiated early. One such example is in Figure 10.13f@CGET from process image 2
can be initiated before theloop nest, and it can be checked for completion after the loop
nest, as shown in Figure 10.13(b). This reordering wouldictpon-blocking primitives to
enable hiding the latency of tl&T from process image 2 with the computation performed
inthel loop. A CAF compiler could do this automatically by using mpie list-scheduling
algorithm on the dependence graph that isSHEEs as early as possible and delays their
completion as late as possible.

Let's consider the code fragment presented in Figure 16)18({e have an opportunity
to pipelinePUTs to the neighborsip anddown and thus overlap communication with
local computation, with the possible transformation pnése in Figure 10.13(d). A CAF
compiler could achieve this effect automatically by firsalacizing the twoPUTs, fusing
the J loop with the loops generated by tR&JTS, strip mining the resulting loop, and then
performing vectorization over the inner loop.

Let’s consider the code fragment presented in Figure 18)18(e have the potential
of waiting for GET completion right before the data obtained is used, as shovig-
ure 10.13(f).

The largest benefit of CAF transformations should be achiexeen dependence anal-
ysis and synchronization analysis are combined. In FigOr&4(a) we present a code frag-

ment that contains an opportunity to issUeET earlier, before an unrelatesgnc noti fy,



159

provided we can prove th& # . The transformed code is shown in Figure 10.14(b). In
Figure 10.14 we present a code fragment that contain an typpiyrto issue &ET before

a barrier: since co-array is written before the first barrier, and no process imagessase

x before the first and the second barrier, it it safe to mové&HEbefore the second barrier

(but not before the first barrier).
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doubl e precision A(1l:100)] *]
i nt eger B(1:100)
doubl e precision C(1:100)
i nteger i
do i=1,n
A(B(1))[p]=C(i)

end do

(a) Example of code using indirection arrays for subscripts

antst or ageAl | ocat e(8«n+4xn, transfer_ptr)
Set St or agePoi nter(ptrlndex, transfer_ptr, 0)
Set St or agePoi nter (bufferPtr, transfer_ptr, 4+«n+paddi ngSi ze)
ptrindex(1l:n) = B(1:n)
do i=1,n
bufferPtr(i) = C(i)
end do
i nvoke AMto performthe renote PUT

(b) Code generation on the source process image

subroutine am put (A, aShape, indexVector, buffer)
doubl e precision A(1l:100)
i nt eger aShape(1)
i nt eger i ndexVector( aShape(1l))
i nteger i
doubl e precision buffer(1:aShape(1l))
doi=1, n
A(i ndexVector (i))=buffer(i)
end do

(c) Corresponding AM handler

Figure 10.11: Code generation example for remote writds suibscripts using indirection

arrays
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doubl e precision A(1l:100, 1:100)[*]
doubl e precision C(1:100)
i nteger i
ki= ... ! non-constant expression
k2= ... ! non-constant expression
doi=1, n

A(i +k1,i +k2) [ p] =C(i)
end do

(a) Example of code using multiple affine expression of loagek variables for subscripts

antst or ageAl | ocat e(8«n+4xn, transfer_ptr)

Set St or agePoi nter(ptrlndex, transfer_ptr, 0)

Set St or agePoi nter (bufferPtr, transfer_ptr, 4+*n+paddi ngSi ze)
ptrindex(1l) = k1

ptrlndex(2) = k2

do i=1,n
bufferPtr(i) = C(i)
end do

i nvoke AMto performthe renote PUT

(b) Code generation on the source process image

subrouti ne am put (A, aShape, indexVector, buffer)
doubl e precision A(1:100, 1:100)

i nt eger aShape(1)

i nt eger i ndexVector (2)

i nteger i
doubl e preci sion buffer(1:aShape(1))
do i=1, n
A(i +i ndexVector (1), i+indexVector(2))=buffer(i)
end do

(c) Corresponding AM handler

Figure 10.12: Code generation example for remote writels subscripts using multiple

affine expressions of the loop index variables



DO I=1,N

. conpute on A, B ...
END DO

TEMP(1:N) = D(1: N[ 2]

(a) Opportunity to initiate &ET earlier

DO J=1, N
compute A(:,J)
END DO

A(O, :)[down] =A(N, :)
A(N+L, ) [up] =A(1, :)

(c) Opportunity to pipelinéUTs

A(:,N=B(1:N[left]

DO J=1, N

. compute with A(:,J)
END DO

.. initiate GET of D(1:N)[ 2]
into TEMP(1: N

DO I =1, N
conpute on A, B
END DO
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wait for GET conpletion ...

(b) Non-blocking=ET

DOI1=1,N,S
compute A(:,1:1+S-1)
start PUT to
A(O, 1:1+S-1)[ down]
start PUT to
A(N+L, I :1+S-1)[up]
END DO
wait for

(d) PipelinedPUTs

PUTs conpletion ...

DO1=1,N, S
initiate A(:,1:1+S-1)=
B(l:1+S-1)[1eft]
END DO
DO I=1,N,S
wait for conpletion of
GET into A(:,1:1+S-1)
compute with A(:,I:1+S 1)
END DO

(e) GET/computation overlap opportunity (f) PipelinG&ET

Figure 10.13: Opportunities for dependence-based conwation optimization of CAF

codes



X[P]=...
sync_notify(P)
= x[q

(a) Opportunity to initiate &ET earlier

SonMe process inmages
wite x ...
call sync_all ()
no process inmages
accesses X ...
call sync_all ()

o3[ G

(c) Opportunity to initiate &ET earlier

Figure 10.14: Opportunities for optimization using condardependence and synchro-

nization analysis.
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initiate GET of x[Q
x[P]=...
call sync_notify(P)
wait for GET conpletion ..

(b) Non-blocking=ET before notify

sone process imges
wite x ...
call sync_all ()
initiate GET of x[Q
no process i nmage
accesses X ...
call sync_all ()
CET nust be conpleted ...

(d) Non-blocking=ET before barrier
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Chapter 11

Pinpointing Scalability Bottlenecks in Parallel Programs

To exploit the power of petascale systems composed of tetfeoatands of processors,
parallel applications must scale efficiently. Howevertiwg and tuning complex applica-
tions to achieve scalable parallel performance is hard.

Understanding a parallel code’s impediments to scalghsitnecessary step for im-
proving performance. Often, an application’s scalablitgtlenecks are not obvious. They
can arise from a range of causes including replicated watg thovement, synchroniza-
tion, load imbalance, serialization, and algorithmic srpissues. Having an automatic
technique for identifying scalability problems would bbdsvelopment-time productivity.

When analyzing an application’s scaling bottlenecks, draikl focus on those that
are the most significant. An application’s components wiié worst scaling behavior
are often not the most significant scaling bottlenecks ferapplication as a whole. For
instance, a routine that displays abysmal scaling but coaswnly a fraction of a percent
of the total execution time is less important than a routive is only a factor of two from
ideal scaling but accounts for nearly 50% of the total exeauime on large numbers of
processors. For developers to tune applications for seafyformance, effective tools
for pinpointing scalability bottlenecks and quantifyirigetr importance are essential.

In our early efforts to understand the performance problehpsrallel codes, we used
HPCToolkit [136], an efficient performance analysis toalich HPCToolkit enables the
analysis of running program by performing sampling of vasidlardware counters. HPC-
Toolkit associates the performance data with applicatbomee code and presents to a user
via a graphical interface. HPCToolkit generatefah performance profile; a user would

know how much time is spent in a certain procedure, such a egrnwation routine, over
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Figure 11.1: Motivating example for parallel performanoalgsis usingcalling contexts
users are interested in the performance of communicatigtnes called in thesol ver

routine.

the entire execution of a program. However, in our expegarsing HPCToolkit to profile
parallel codes, we discovered that such information is niicgent. If the goal is mod-
ifying the application to improve the parallel performantigen it is extremely useful to
know thecalling contexiof the communication routine, em on which call chain it ocedr
and with what frequency. A motivating example is given indfg 11.1: let's consider a
parallel application in which themi n routine invokes &et up routine, followed by the
actualsol ver routine. Bothset up andsol ver routines invoke communication rou-
tines such asend andwai t . A flat performance profile would tell us how much total
time is spent in the communication routines; however, a weed be more interested in
how much time is spent in the communication routines callethfthe solver.

This chapter describes a new approach for identifying bdélabottlenecks in execu-
tions of SPMD parallel programs, quantifying their impaetf@rformance, and associating
this information with the program source code. Our analiettinique and our tools that
apply it are independent of the parallel programming mag&derlying processor architec-

ture, communication interconnect, and application charatics. Our approach involves
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three steps.

First, we collect call path profiles for two or more execusiaf unmodified, fully-
optimized application binaries on different numbers ofgessors. Call path profiles cap-
ture the costs of the various calling paths during the execwf a program. We represent
concisely a call path profile as a calling context tree (CAB)[In a CCT, each node cor-
responds to a procedure, such that every path from the r@atdio node reflects an actual
call path realized during the program execution. The nofléseoCCT are annotated with
the number of samples that were collected by the profilerenptiocedure corresponding
to that node, which approximates the execution cost of tlaeno

Second, we use our expectations about how costs should difieng an ensemble
of executions to compute scalability at each point in a pogs execution. We assess
each component’s deviation from scalable performance bypoting its cost in excess
of its expected value. We report this cost normalized as &idma of overall program
execution time. To help developers understand how perfocedottlenecks arise, we
attribute scalability metrics to each node in an execusicalling context tree.

Third, with the aid of an interactive browser, an applicatieveloper can explore a
calling context tree top-down fashion, see the contexts hickv poor scaling behavior
arises, see the source code lines that fail to deliver seafsyformance, and understand
exactly how much each scalability bottleneck dilates eiendime.

In this chapter we evaluate the applicability of call patlsdxzh profiling for parallel
codes. We used a toolchain containogpr of , andhpcvi ewer to evaluate the scala-
bility bottlenecks for a series of CAF applications suchlesNAS benchmarks MG, CG,
SP, and the LBMHD kernel, for a UPC version of NAS CG, and for RlIMersion of the
Parallel Ocean Program (POP), and for a MILC benchmark. Ipefsdix A, we present
scaling analysis results for MPI and CAF versions of NAS M&,GP, BT and LU. We
determine which communication and synchronization piv@# do not scale, and rely on
the call path information to determine which code fragmamis programming idioms are

responsible for the non-scalable use of communicationipivies.
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11.1 Call Path Profiling and Analysis

Thecspr of profiler [82,83], developed as part of the HPCToolkit projd68] at Rice
University, profiles unmodified, fully-optimized execula® without prior arrangement.
cspr of uses event-based sampling in conjunction with a novel tadtksunwinding tech-
nique to attribute execution costs to calling contexts asgbaiate frequency counts with
call graph edges.

cspr of stores sample counts and their associated calling conteaisalling context
tree (CCT) [19]. In a CCT, the path from each node to the root of tiee represents a
distinct calling context. A calling context is representgda list of instruction pointers,
one for each procedure frame active at the time the eventi@tuSample counts attached
to each node in the tree associate execution costs with thegceontext in which they
were recorded.

After post-mortem processingspr of 's CCTs contain three types of nodes: proce-
dure frames, call sites and simple statements. A procedangefcan have call sites and
simple statements as children. A call site can have one oe mrmcedure frames as chil-
dren. Simple statements don’t have any children.

In this chapter, we usespr of 's CCTs as the basis for analyzing an ensemble of
executions using performance expectationspr of supports measurement of both syn-
chronous and asynchronous events. For each evept,of records the calling context in
which the event occurred.spr of has low overhead (2-7%) and has one order of magni-
tude lower overhead than instrumentation based profilets asgpr of for call intensive
programs.

We co-designed an API for user defined synchronous metrgggostiincspr of . An
application can check if it is being run witdspr of by querying a functiosproflsActive
If the result is true, then the application can register rogtfor synchronous profiling.
Using the API, one first acquires a handle for a metric fronmfcs pr of , then specifies
a string name for the metric along with a sampling frequenally, the application

can record metric events by callingcapr of API function. At that pointcspr of will
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unwind the stack and record the calling context for the event

Mellor-Crummey, Tallent and Zhao developed a source caticgl mechanism for call
path profiles and an interactive viewer. The source coroglahodule takes as input the
performance data collected loygpr of , and converts it into an XML file containing the
calling context tree associated with the sample eventsehebed the source correlation to
group call sites and line samples in the same function umgesame procedure frame, and
extended the XML output format to represent the procedarads. The interactive viewer,
hpcvi ewer , is a Java-based viewer of the XML file produced by the souoceetation
phase; it displays a top-down view of the call tree, togethi#h the metrics collected
by cspr of (cycles or user-defined metrics), and enables a user toatavige call tree.
The metrics values for the tree nodes are inclusive: theienesitue for call tree node
corresponding to functiohoo is the sum of the metrics for all the functions called dingctl
or indirectly byf oo and the metric values collected in the body ofo.

We extended a prototype dfpcvi ewer for analysis of call path profiles with a
bottom-up view of the call tree. The bottom-up view sortaticedures by their inclusive
metric value. For a given procedure, the bottom-up view ksad user to navigate up the
call tree for that procedure and also attributes how muchefgrocedure’s cost comes
from different calling contexts. For example, a proceduo® might be called byA, B,
andC, with 10% of the costs attributed to calls frofip 20% to calls fromB, and 70% to
calls fromC. The bottom-up view displays this kind of information andbles a user to

navigate front 0o to its calling contexts correspondingA¢ B, andC.

11.2 Automatic Scalability Analysis

Users have specific expectations about how the performanttesio code should differ

among an ensemble of executions. This is true for both sandjparallel executions.
Consider an ensemble of parallel executions. When diftemambers of processors

are used to solve the same problem (strong scaling), we egpeexecution’s speedup

with respect to a serial execution to be linearly proposido the number of processors
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used. When different numbers of processors are used butitberd of computation per

processor is held constant (weak scaling), we expect theuére time for all executions

in an ensemble to be the same. Both types of scaling havearglpvactical applications.

When time to solution is critical, such as when forecastiext week’s weather, then strong
scaling is preferred. When fine resolution modeling is neags then a common practice
is to choose a problem size that can be run on a single node¢handncrease the number
of processors while keeping the problem size on each nodstamn

In each of these situations, we can put our expectations t& %o analyzing appli-
cation performance. In particular, we use our expectataiwait how overall application
performance will scale under different conditions to amalyow well computation per-
formed in each calling context scales with respect to oueetgiions.

To apply our approach, we first usepr of to profile a program under different condi-
tions (e.g, on a different number of processors or using different irges). Second, we
clearly define our expectations and compute how much pediocendeviates from our ex-
pectations in each calling context in an execution’s CCbreed bycspr of . Finally, we
use an interactive viewer to explore the CCT whose nodesraratated with the scalabil-
ity metrics that we compute. The interactive viewer enati®selopers to quickly identify
trouble spots.

While the principle of performance analysis using expémtatapplies broadly, in this
chapter we focus on using expectations to pinpoint scéhabibttlenecks in an ensemble

of executions used to study strong scaling or weak scaliregpatrallel application.

11.2.1 Call Path Profiles of Parallel Experiments

We analyze strong or weak scaling for an ensemble of paetistutionst = {E;, Es,
..., E,}, whereE; represents an execution ppprocessors, = 1, n. LetT; be the running
time of the experimenk;.

Our calling context trees contain three types of nogescedure framescall sitesand

statementsA procedure frame node can have call sites and statementsldsen, and it
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corresponds to invoked procedures. A call site can haveegioe frames as children, and
corresponds to source code locations where other procedrgenvoked. Statement nodes
don’t have any children nodes, and they correspond to santgken during computation
performed in the various procedures. The analysis we preskes on CCTs to have the
same structure in parallel executions on varying numberadfgssors. For every nodein
a CCT, letC,,(m) be its cost orp; processors. In our analysis, we consider bothusive
andexclusivecosts. The inclusive cost at represents the sum of all costs attributeato
and any of its descendants in the CCTurlfis an interior node in the CCT, it represents an
invocation of a functiory. Its inclusive cost represents the cost of the calf itself along
with the inclusive cost of any functions it calls. 7t is a leaf in the CCT, it represents
a statement instance inside a call to some functionn i a procedure frame fof, its
exclusive cost includes the cost incurred in statemenfs which are its children. Ifn is
a call site, or a statement, its exclusive cost represeatsdst attributed tan alone. For a
leaf procedure the inclusive cost equals the exclusive ttastuseful to perform scalability
analysis for both inclusive and exclusive costs; if the loEscalability attributed to the
inclusive costs of a function invocation is roughly equatie loss of scalability due to
its exclusive costs, then we know that the computation ibfinaction invocation doesn’t
scale. However, if the loss of scalability attributed to adtion invocation’s inclusive costs
outweighs the loss of scalability accounted for by exclesigsts, we need to explore the
scalability of the function’s callees.

We introduce our scalability analysis by describing saéitglmetrics of increasing

complexity, considering the cases of strong scaling ankwealing.

11.2.2 Simple Strong Scaling

Consider two strong scaling experiments runningl@ndp processors, respectively. Let
m a node in the CCT. In the ideal case, we would expectdhat:) = 11001 (m), or equiv-
alently thatpC,(m) = Cy(m). Often, this will not be the case, and we can measure how

far we are from our expectation of ideal scaling by computitgexcess work amount for
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nodem in the p-processor execution ag&’,(m) — C;(m). To normalize this value, we
divide the excess work by the total work performed in expentt,, to obtain

_ pCy(m) — Cy(m)
T,

SEW (m)

the fraction of the execution time that represents excesk attributed to noden.

11.2.3 Relative Strong Scaling

Consider two strong scaling experiments executech @md ¢ processors, respectively,
p < ¢. The expected behavior in the case of ideal relative scaliogid beqC,(m) =
pC,(m). To capture the departure from the expectation, we compatexcess work in the
g-processor execution g§’,(m) — pC,(m). To normalize this previous value, as before,
we divide it by the total work performed in experimehy, to obtain

_ qCq(m) — pCp(m)
qTy

REW (m)

the fraction of the execution time that represents excesk attributed to noden.

11.2.4 Average Strong Scaling

Consider an ensemble of strong scaling experiméhis..., £,. We define the fraction
of execution time that represents the average excess winitbugtd to CCT noden as

follows:

o (piCpi(m) — p1Cy, (m))
opil;
Notice that forAETW (m), the numerator computes excess work relative to the work

AEW (m) =

performed on the smallest number of processors. We use th@®gp, processors rather
than the cost on one processor for the following reason: a@e problems, it might not
be possible to solve the whole problem on a single procedaahis case, we evaluate
relative scaling with respect to the execution time on thalkrst number of processors on

which the chosen problem size runs. The average excess varicaare intuitive; perfect
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scaling corresponds to a value(@fsublinear scaling yields positive values, and supertinea
scaling yields negative values.

When analyzing scaling, we have a choice between using @ee@alability over an
ensemble of experiments versus using relative scalabiitween the parallel runs on the
smallest and the largest number of processors. The adwanfahe average scalability
metric is that it smoothes over the performance data noisedes parallel runs on dif-
ferent number of processors. In contrast, using relatiadireg with the largest number
of processors provides a quantitative explanation of athefparallel overhead incurred.
Typically, both methods provide qualitatively similar vés.

Note that the simple and relative excess work metrics dasdrin the preceding sec-
tions are simply special cases of the more general averaggs&xvork metric that we

describe here.

11.2.5 Weak Scaling for a Pair of Experiments

Consider two weak scaling experiments executeg andq processors, respectively,<

g. The expectation is that,(m) = C,(m), and the deviation from the expectation is
Cy(m) — Cp(m). We normalize this value by dividing it by the total work pamhed

in experimentt,, and define the fraction of the execution time representwogss work
attributed to noden as follows

Cy(m) = Cp(m)
T

q

REW (m) =

11.2.6 Weak Scaling for an Ensemble of Experiments

Consider an ensemble of weak scaling experiménts..., F,,. We define the fraction
of execution time that represents the average excess winitbugtd to CCT noden as

follows:

Yiza(Cpi(m) = Gy, (m))
2T

AEW (m) =
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The same argument for relative strong scaling vs averagegstcaling apply when
choosing between weak scaling between a pair of experimenigeak scaling for an en-

semble of experiments.

11.2.7 Analysis Using Excess Work

The excess work metrics that we described can be computdxbfiorinclusive and exclu-
sive execution costs. We defidel ETV (m) as theinclusive average excess wogk node
m; this represents the fraction of execution time correspantb inclusive excess work
attributed to CCT node:. We defineEAEW (m) as theexclusive average excess work
at nodem; this represents the fraction of execution time correspantb exclusive excess
work attributed to CCT node:. Similarly, we define/ REW (m) as theinclusive relative
excess worlat the noden and EREW (m) as theexclusive relative excess woak node
m.

IREW (m) and EREW (m) serve as complementary measures of scalability of CCT
nodem. By using both metrics, one can determine whether the agiplit scales well or
not at noden, and also pinpoint the cause of any lack of scaling. If a fimmanvocationmn
has comparable positive values fdR EW (m) andEREW (m), then the loss of scalability
attributed to the inclusive costs o1 is roughly equal to the loss of scalability due to its
exclusive costs and we know that the costrofdoesn’t scale. However, if the loss of
scalability attributed ton’s inclusive costs outweighs the loss of scalability acd¢edrfor
by its exclusive costs, we need to explore the scalability.sfcallees. To isolate code that
is an impediment to scalable performance, one simply nésgdown CCT edges from
the root of the tree to trace down the root cause of positR&W values. A strength of
this approach is that it enables one to pinpoint impedimenssalability, whatever their
underlying causee(g, replicated work, communication, etc.). We can performnailsr
analysis using the AEW (m) and EAEW (m) metrics.
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11.2.8 Automating Scalability Analysis

We prototyped tools to support automatic scalability asiglyoy building upon compo-
nents of Rice University’s HPCToolkit performance anaysiols [82,136,168tspr of ,
xcspr of , andhpcvi ewer . cspr of was designed as a profiler for node programs; for
parallel programs, we usespr of to collect a node profile for each process in a parallel
executionxcspr of is used to post-process a raw call path profile collecteddyyr of ,
correlate it with the application’s source code, and preda XML representation of a
calling context tree annotated with performance metigscvi ewer is Java-based user
interface that provides users with a top-down interactiveé aavigable view of a calling
context tree, along with associated performance metridgpargram source code.

In Figure 11.2, we present the process by whichtAé’1 and EAEW metrics are
computed: call path profiles are collected for each procéssparallel execution using
csprof onpy, po, ..., p, Processors. The resulting profile data is then correlatéad tive
source code and converted to XML format usigs pr of . Next, we collate the XML
data from all experiments and compute feEW and EAEW scalability scores. Finally,

a performance analyst can uspcvi ewer to interactively explore a calling context tree
annotated with both measured execution costs and the gitglatetrics we compute. The

IREW (m) and EREW (m) metrics are computed using a similar process.

11.3 Experimental Methodology

For the analysis performed in this chapter, we used two tgbesetrics. One was the
sampling-based number of cycles metric. The other comkadteser defined metrics; we
instrumenteataf ¢’s runtime usingcspr of 's API for monitoring synchronous events to

register and then record the following metrics:

e number and volume d®?UTs

e number and volume dBETSs
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p, CPUs p, CPUs p, CPUs

Binary Binary Binary

call path callpath SEEEEEEEEEENEEEEEEEEEN call path
profile data profile data profile data

p, XML p, XML p.. XML
profile data proﬁle data prorf'i le data
= il

1

IAEW | EAEW
database

(a) Process for performing scalability analysis using path profiles.

IAEW /| EAEW
database
Scalability-annotated
calling context trees
meML
profile data

(b) Process for visualizing call path based scalabilitylysis.

Figure 11.2: Processes for computing and displaying tHea#h-based scalability infor-

mation.
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e number of notify and waits

e number of barriers

We analyzed the parallel scalability for MPI and CAF versiah several benchmarks
using two analysis techniques. The first type of analysis seasi-automatic and focused
on understanding the impact of scalability of particulanoounication primitives on strong
scaling. We determined the total time spent in each comnatioit primitive of interest,
then plotted the relative cost of communication and contprigime as a function of
the number of processors. The computation cost was compst#te difference between
the total execution time and the total communication tinfethé time spent in a partic-
ular communication primitives does not decrease propaatito the increase in number
of processors, the performance of primitive is non-scalaldfe leveragetipcvi ewer’s
bottom-up view to determine which call site or programmidigpim was responsible. We
were inspired by Bridgest al [39] to use stacked charts of relative costs to evaluat@ascal
bility of communication primitives and communication. Comnication primitives whose
relative cost increases with a growing number of procegsurg to scaling problems. Note
that if computation scales ideally, then the relative céstoonmunication indicated by the
layered charts would coincide with the excess work for eachlfel experiment. However,
in practice, for strong scaling applications the compuaotatiost does not scale linearly with
the number of processors, so the total cost of communicasadndicated by the layered
charts is usually an underestimation of the excess work.

The second type of analysis was the automatic expectatiassed scaling analysis,
which computed the excess work metrics for all nodes in tlkngacontext tree of an
application. Usinghpcvi ewer we determined which functions were responsible for the
lack of scalability, and whether any non-scalability wag ¢ communication or compu-
tation.

Typically, parallel scientific codes include a initialikat phase, a timed phase for
which results are reported and which is the target of opttion, and a reporting and

clean-up phase. It is important to note that our scalingysmimethods operate on the
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complete application execution, and we report lack of $xbila that could be part of any
phase. Our scaling results cannot always be used for alsti@iyard quantitative perfor-
mance comparison of different versions of the same alguarithg. an MPI version vs a
CAF version, but could be used to provide insight into septiroblems of each application
under consideration.

The CAF codes we study were compiled and run wisth ¢ using the ARMCI library.
For the MPI codes we study, we analyze the cost of computatnmhthat of the MPI
primitives. For the CAF experiments, we focus on the cost BIMCI primitives. We
are also interested in determining the overhead incurredsiygcspr of to profile the
parallel codes.

The experiments presented in this section were performedctuster of 92 HP zx6000
workstations interconnected with Myrinet 2000. Each wtalien node contains two 900
MHz Intel Itanium 2 processors with 32KB/256KB/1.5MB of ILP/L3 cache, 4-8GB of
RAM, and the HP zx1 chipset. Each node is running the Linuxatpegy system (kernel
version 2.4.18-e plus patches). We used the Intel compii@1@ as our back-end compiler.
We used one CPU per node for our experiments.

For all the benchmarks analyzed we focused on small prohisss,svhich tend to ex-
pose lack of scalability due to communication and synclaaton inefficiencies on small
number of processors. In the remaining of this chapter weegmteexperimental results for
which we gain insight using our scaling analysis. A compnsiee description of the rest

of our scaling analysis experiments is given in Appendix A.

11.4 Experimental Results
11.4.1 Analysis of LANL's POP Application

An attractive scaling analysis target is represented byalseamount of MPI applications.
We analyzed the version 2.0.1 of the Parallel Ocean ProgP®®] [124,125], which uses

MPI to communicate data. POP is an ocean circulation modehioh depth is used as the
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OP.190
5 =
f program FOF j
Eeet =
Scopes |g # samples IREW T EREW Enl
pop 4.56e06 100.0 | 0.71e00 -0.00e00 =
¢ 4 POP.f90: 104 3.58e06 78.5% | 0.50e00 -0.00e00
94+ step_mod_mp_step_ 3.57e06 78.3% | 0.50e00 0.01e00
¢ step_rnod.fA0: 258 2.26e06 49.5% | 0.30e00 0.00e00
o= 4 haroclinic_mp_baroclinic_driver_ 2,21e06 48.5% | 0.30e00 0. 00e00
¢ step_mod.fa0: 274 5.65e05 12.4% | 0.08=00 0.00e00
&4 barotropic_mp_barotropic_driver_ 5.61205 12.3% | 0.08200 0. 00200
o= step_mod.f90: 298 1.45e05 3.3% | 0.03e00 0.00e00
o= step_mod.fa0: 294 7.680e04 1.7% | 0.02e00 0. 00edd
o= ¢ step_mod.fa0: 292 7.65e04 1.7% | 0.0Ze0d 0.00e00
o <+ step_mod.fa0; 296 7.20e04 1.6% | 0.01e00 0. 00e00
o 4 step_rnod fO0: 263 7.20e04 1.6% |0.01e00 0.00e00
o=+ step_rmod f0: 530 4,05e04 0.9% | 0.0le0d 0.00s00
= 4k step_mod. 0 290 2.70e04 0.6% | 0.01e00 0.00e00 i
o4 step_modfa0: 288 4.05204 0.9% | 0.01led0 -0.00=00 T
o4 step_mod.f90: 529 4.05204 0.9% | 0.00e00 -0.00e00
step_mod.fa0; 2349 1.680e04 0.4% | 0.00e00 0. 00e00
o= < step_mod.f90: 261 1.35e04 0.3% | 0.00e00 —0.00e00
o <+ step_mod.fa0; 263 4.50e03 0.1% | 0.00e00 -0.00=00
step_rmod f0: 161 1.50e03 0.0% | 0.00e00 0.00e00
step_mod f90; 247 1.50e03 0.0% | O.00=00 0. 00e0n
step_mod.f90; 474 4.50e03 0.1% | 0.00e00 0.00e00
& 4 step_mod.fA0: 285 1.06e05 2.3% | -0.00e00 ...| 0.00e00
step_mod f90: 475 3.00e03 0.1% | -0, 00e00 aas| —0.00e00
¢ 4 POP.f90: 79 9.64e05 21.2% | 0.21e00 0.00e00
o4 initial_rnp_initialize_pop_ 9.64e05 21.2% | 0.21e00 0.01=00
o= 4+ POP.f30: 148 7.50e03 0.2% | 0.00e00 0.00e00
& 4 POP.fA0: 151 £.00203 0.1% | 0.00=00 0. 00200 -
<] v ][e] i I [¥]

Figure 11.3: Screenshot of strong scaling analysis regtBOP, using relative excess

work, on 4 and 64 CPUs.

vertical coordinate. The model solves the three-dimerdiprimitive equations for fluid
motions on the sphere under hydrostatic and Boussines@xdppations. Spatial deriva-
tives are computed using finite-difference discretizatiamich are formulated to handle
any generalized orthogonal grid on a sphere, includingldipod tripole grids which shift
the North Pole singularity into land masses to avoid timp stanstraints due to grid con-
vergence.

We analyzed POP for a “large” test domain, with 384x288 donssze, 32 vertical
levels, and 2 tracers. We present scaling analysis ressiltg) welative excess work on

4 and 64 CPUs in Figures 11.3 and 11.4; we present the scalagsss results using
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239 doketkm =
2320
23 =*zonal advection
2322
2323 imas = maxloccl_adwuk_block( K
2324 of_termp = ofl_advuk_blockiimax(1) K
2325 ofl_advukik) = global_mamwalicl_temp)
2326
2337 cfladd_temp=10
2328 if {efl_ternp == cfl_advukik) then
2329 cfladd_tempi1:2) = cladd_advuk_blocky imax{1) k)
2330 endif
2331 cfladd_advuk(l k) = dlobal_mawvalicfladd_tempil)
2332 cfladd_advuk(2 k3 = global_maxvalicladd_tempi2n
2333
2334 = metidional advection
2335
2338 imax = maxloccll_adwik_block( ki
2337 ofl_termp = cfl_adwik_blockiimax(1), k)
2338 cfl_adwkik) = global_maseal(cfl_tarmp)
2339
2340 cfladd_temp=10
2341 if {efl_ternp == cfl_adwkik)) then =
2342 cfladd_termpi1:2) = cladd_adwk_block imasx1) k) |
2343 endif
2344 ciladd_adwek(1 k) = glohal_maxal{clladd_termp(1y) -
2345 cfladd_adweki2 k) = global_masval{cladd_ternp (2 -
Scopes ’E_ # samples IREW T EREWW |
haroclinic_mp_baroclinic_driver_ 2.21e06 48.5% | 0.30=00 0.00e00 =
¢4 baroclinic.f40: 733 1.20e06 26.3% | 0.26e00 0.00e00
@4 diagnostics_mp_cfl_check_ 1.19e06 26.2% | 0.25=00 -0.00e00
7 4 [diaghostics f90: 2325 1.42e05 3.1% | 0.03=00 0.00e00 =
¢4+ global_reductions_mp_global_maxal_scalar_dbl_ 1.42&05 3.1% | 0.03=00 0. 00e00
¢ 4 global_reductions f30: 2488 1.42e05 F.1% | 0.03e00 0.00e00
o4 mpi_allreduce_ 1l.42e05 3.1% | 0.03e00 0.00e00
¢4 diagnostics f90; 2358 5.55e0d4 1.2% | 0.0ledd 0. 00e00
o= 4 glabal_reductions_mp_global_maxval_scalar_int_ 5.55e04 1.2% | D.0leno 0. 00e00
¢ <+ diagnostics 80 2332 E.2Re0d 1.2% | 0.0ledd 0.00e00
o 4+ global_reductions_mp_global_masval_scalar_int_ E.25e04 1.2% | 0.0le00 0.00e00
7 4 diagnostics 900 2351 5.25e04 1.2% | 0.01e00 0.0ae00
o= glabal_reductions_mp_global_maxal_scalar_dbl_ 5.25e04 1.2% | 0.0lend 0. 00e00
¢ -+ diagnostics f90: 2344 5.25e04 1.2% | 0.0legd 0.00e00
o= global_reductions_mp_global_maxval_scalar_int_ 5.25e04 1.2% | B.0le0n 0. 00edn
¢ diagnostics.fB0: 2416 5.25e04 1.2% | 0.01ed0 0. 00e0d -
4 [v]4] i | [¥]

Figure 11.4:. Screenshot of strong scaling analysis resot®OP, for the baroclinic

module, using relative excess work, on 4 and 64 CPUs.

average excess work for an ensemble of executions on 4, 241&2, 36, 40 , 48, and
64 CPUs in Figures 11.5 and 11.6. The results obtained withdlative excess work are
gualitatively similar to those obtained using the averageess work; however, the relative
excess work obtained using the minimum and maximum numb€&Pd&fs emphasizes the

program behavior on the largest number of CPUs.
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File
POP.FOD
7] program FOP |J
Scopes @ # samples IAEW T EAEW ﬁ"l
- pop 4.56e06 100.0 |0.48200 -0, 00e00 |
9 4 POP.f90; 104 3.58e06 78.5% | 0.36e00 -0.00e00
¢4 step_mod_mp_step_ 3.57e06 TE.3% [0.36e00 0, 00e0d
¢4 step_mod.f90; 258 2.26e06 49.5% |0 2100 0. 00e00
o= 4k baroclinic_mp_baroclinic_driver_ 2.21e06 45.5% | 0.21200 0. 0000
74k step_mod.fa0; 274 5.65e05 12.4% | 0.06e00 0.00e00
&= 4 parotropic_mp_barotropic_driver_ 5.61e05 12.3% | 0.06e00 0. 0000
o= 4 step.mod.f90: 298 1.48e05 3.3% |0002e00 0L 0000
o= 4 step_mod.f90: 292 7.65e04 1.7% |0.01e00 0. 00800
o= 4 step_mod.f90; 294 7.80e04  1.7% | 0.01e00 0. 00800
o= 4 step_mod. f90; 296 T.20e04  1.6% |0.01e00 0, 00e0d
o= 4 step_mod.f40; 288 4.05e04  0.9% | 0.01e00 0. 00e00
o= 4 step_mod.f90; 530 4.05e04  0.9% | 0.01e00 0. 00800
o= 4 step_mod. f90; 263 7.20e04 1.6% |0.01e00 -0, 00e00
o= 4 step_mod.f90; 290 2.70e04  0.6% | 0.00e00 0. 0000
o= 4r step_mod.f90: 529 4.05e04  0.9% | 0.00200 -0, 00200
stepomod.f90; 235 1.80e04 0.4% |0.00200 0. 00e00
o= step_mod.f90; 261 1.35e04  0.3% | 0,00e00 0L 00e00
o= 4 step_mod.f40; 263 4.50e03  0.1% | 0.00=00 -0, 00e00
step_maod.fa0; 247 1.50003  0.0% | 0.00200 0. 00800
step_mod.f90; 479 4.50e03 0.1% |0.00e00 0. 0000
step_mod.f90; 161 1.50e03  0.0% | 0.00e00 0. 00800
step_maod.fa0; 475 F.00e03 0.1% | -0.00200 ... |-0.00800
o= 4 step_mod. f20; 285 1.06e05 2.3% | -0.00200 ce| 000200
¢4 POPfOO: 79 9.64e05 21.2% [0 1200 0. 00e00
o= 4 initial_mp_initialize_pop_ 9.64e05 21.2% |0.12e00 0. 01e00
o= POP.f30; 148 7.50e03  0.2% | 0.00e00 0,00a00
o4 POP.f90; 151 6.00e03  O.1% | 0.00e00 0. 00e00
4] [»]4] II I ]

Figure 11.5: Screenshot of strong scaling analysis reBultBOP, using average excess
work, for an ensemble of executions on 4, 8, 16, 24, 32, 36480and 64 CPUs.

The relative excess work results for 4 and 64 CPUs show tleathth main program
loses71% efficiency, with53% due to the time step routine, ard% due to the initial-
ization routine. The time step costs are further discritedas33% due to the baroclinic
module,8% due to the barotropic module, and other functions with senabsts. Within
the baroclinic driver, the routingi agnost i cs_nmp_cf | _check is responsible fo25%
loss of scalability; we show the scaling analysis for thistioe in Figure 11.4.

The average excess work results on 4, 8, 16, 24, 32, 36, 400864 CPUs showed
that the main program display8% loss of scaling, out of whicB6% are due to the time

step routine, and the remaining% are due to initialization routine. The time step costs
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| »

2318 do k=1,km

2320

23 =*zonal advection

2322

2323 imas = maxloccl_adwuk_block( K

2324 of_termp = ofl_advuk_blockiimax(1) K

2323 ofl_advukik) = global_mamwalicl_temp)

2326

2337 cfladd_temp=10

2328 if {efl_ternp == cfl_advukik) then

2329 cfladd_tempi1:2) = cladd_advuk_blocky imax{1) k)

2330 endif

2331 cfladd_advuk(l k) = dlobal_mawvalicfladd_tempil)

2332 cfladd_advuk(2 k3 = global_maxvalicladd_tempi2n

2333

2334 = metidional advection

2335

2338 imax = maxloccll_adwik_block( ki

2337 ofl_termp = cfl_adwik_blockiimax(1), k)

2338 cfl_adwkik) = global_maseal(cfl_tarmp)

2339

2340 cfladd_temp=10

2341 if {efl_ternp == cfl_adwkik)) then =
2342 cfladd_termpi1:2) = cladd_adwk_block imasx1) k) |
2343 endif

2344 ciladd_adwek(1 k) = glohal_maxal{clladd_termp(1y) -

2345 cfladd_adweki2 k) = global_masval{cladd_ternp (2

al
Scopes ’E_- # samples IREW T EREW jl
baroclinic_mp_baraclinic_driver_ 2.21e06 48.5% | 0.30=00 0.00e00 -
¢4+ baroclinic f90; 733 1.20e06 26.3% | 0.26e00 0.00e00
@4 diagnostics_mp_cfl_check_ 1.19e06 26.2% | 0.25=00 -0.00e00
¢ 4 [diaghostics.fE0: 2325 1.42e05 3.1% | 0.03200 0. 000 =
¢4+ global_reductions_mp_global_maxal_scalar_dbl_ 1.42&05 3.1% | 0.03=00 0. 00e00
¢4+ global_reductions f30: 2428 1.42e05 3.1% | 0.03=00 0. 0000
o4 mpi_allreduce_ 1l.42e05 3.1% | 0.03e00 0.00e00
¢4 diagnostics f90; 2358 5.55e04 1.2% | 0.01e00 0. 00e00
o= 4 glabal_reductions_mp_global_maxval_scalar_int_ 5.55e04 1.2% | D.0leno 0. 00e00
¢ <+ diagnostics 80 2332 E.2Re0d 1.2% | 0.0ledd 0.00e00
o 4+ global_reductions_mp_global_masval_scalar_int_ E.25e04 1.2% | 0.0le00 0.00e00
7 4 diagnostics 900 2351 5.25e04 1.2% | 0.01e00 0.0ae00
o= glabal_reductions_mp_global_maxal_scalar_dbl_ 5.25e04 1.2% | 0.0lend 0. 00e00
¢ -+ diagnostics f90: 2344 5.25e04 1.2% | 0.0legd 0.00e00
o= global_reductions_mp_global_maxval_scalar_int_ 5.25e04 1.2% | B.0le0n 0. 00edn
¢ < diagnostics fa0; 2416 E.25e0d  1,2% | 0.01e00 0. 00e00 "
<] v l[«] i | [¥]

Figure 11.6: Screenshot of strong scaling analysis resot®OP, for the baroclinic
module, using average excess work, for an ensemble of ezrswin 4, 8, 16, 24, 32, 36,
40, 48, and 64 CPUs.

are split between the baroclinic module, with%, the barotropic module, witf%, and
other functions with smaller costs. Within the baroclinievdr, we observed at’% loss
of scalability due the routinéli agnosti cs_np_cfl check; we present the scaling

analysis results for this routine in Figure 11.6.
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For both sets of results, we can notice that lack of scalinduis to multiple calls to
the routinegl obal reducti on_maxval _scal ar _dbi . By using source code corre-
lation, we discovered that for each of the vertical level®PPperforms multiple scalar
reductions. This deficiency can be addressed by aggregaengductions, and we found
the interactive viewer of the annotated call tree to be exélyg effective in pinpointing this

scaling bottleneck quickly.

11.4.2 Analysis of the NAS MG Benchmark

The MG multigrid kernel calculates an approximate solutmthe discrete Poisson prob-
lem using four iterations of the V-cycle multigrid algonithon an x n x n grid with peri-
odic boundary conditions [24]. The CAF version of NAS MG isdebed elsewhere [73].
In Figure 11.7 we present the scalability of relative cost@hmunication primitives and
computation for the CAF version of NAS MG; the overall excessk indicated by the
layered chart i$2%. In Figure 11.8 we present a summary of the user-defined cadtn
the volume of communication and synchronization. The pngfibverhead was of 4-7%
for the CAF MG experiments.

By analyzing the scalability of communication primitivesdacomputation for CAF
NAS MG, we determined that the relative cost of &feMCl _Get andARMCI _Barri er
primitives increases as the number of processors incre8sessing the bottom-up view,
we determined that both primitives are used in inefficierweritten implementation of
reductions such as sum and maximum. Original CAF sourcd-lewplementations of
collective operations, which we received from Robert Nwimyriwere developed on Cray
systems and used barriers. For example, a sum reductiondde precision vectors was
implemented as follows. Let. = [log(num_images())]. Next, a barrier is performed,
after which each of the process imagewith i = 1, m computes the partial sum reduction
by getting and adding the corresponding vector of elemeais process images: + m,

i + 2m, .... A barrier is called again, after which process imageith : = 1, m, gets the

partial sums from process images2, ...,« — 1,7 + 1, ....,m. A barrier is called again,
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Figure 11.7: Scalability of relative costs for communioatprimitives and computation

for the CAF version of the NAS MG benchmark class A (stz6°).

CPUs| PUTs| PUTvol | GETs| GET vol | notifies | waits | barriers
1 0 0 93 1064 0 0 292
2 714 | 51031104 95 1084 1428 | 1428 292
4 714 | 32018592 95 1084 1428 | 1428 292
8 714 | 19297376 95 1084 1428 | 1428 292
16 724 | 12939008 95 1084 1438 | 1438 292
32 734 | 8152464 95 1084 1448 | 1448 292
64 744 | 4938104 95 1084 1458 | 1458 292

Figure 11.8: Communication and synchronization volumetlier CAF version of NAS
MG, class A (size56%).

after which the remaining process images read the overall fsom one of the firsin
process images, such that process imjagads the sum from process imagemod(j, m),
for 5 = m + 1,numimages() These reductions implementations do not yield portable
performance, since they are not efficient on clusters.

Even though for MG these reductions occur in the initialaatphase, which is not
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measured and reported in the timed phase of the benchmpdints to a problem: the lack
of collective communication at the language level leadssusewrite an implementation
of these primitives that does not deliver portable hightgpenance.

By inspecting the communication and synchronization va@ueasults presented in Fig-
ure 11.8, we noticed that the number of barriers is constant £ to 64 processors. How-
ever, since the computation volume decreases, it meanshhatlative importance of
barriers (and reductions using them) increases. It is thexerucial to have good support
for collective operations.

Figures 11.9 and 11.10 show screenshots with results ofgscaling analysis using
relative excess work for the CAF version of NAS MG, on 1 and 6gcpssors. The results
in Figure 11.9 show that theREW for the main routing i ce_ng_caf is 82%, out of
which44% is due to calls tar an3, 16% to the central timed routineg 3p, 12% is due to
acalltocafi nit _, 9% to callstor esi d, 4% to a call tong3p in the initialization phase,
3% to the routinecaf gl obal startupinit_ ,3%toacalltocaf _al | _-max_dp, 2%
to calls tonor nRu3, and1% to a call tocaf _bcast _i in the initialization phase. For
caf i ni t, which is called when launching CAF program®% of IREW is due to a
call to MPI _I nit and2% to a call toARMCI _I ni t ; these routines initialize the MPI
and the ARMCI libraries, respectively. In Figure 11.10 welsime top-down the routine
zr an3. By explaining why44% of IREW is attributed tazr an3, which randomly ini-
tializes the work array with a combination of zero and oneuga) we find that the loss
of scalability is due to calls teaf _al | max_i _psbody, caf _al | max_dp_psbody,
caf _al I m n_dp_psbody, which are suboptimal implementations of minimum and max-
imum element reductions for integer and for double prenisivays. Within the implemen-
tation of these reductions, we find that the largest excesk amount is due to the use of
ARMCI Barri er. Theroutiner an3is called only in the initialization part of the bench-
mark and is not part of the benchmark’s timed result; howgu@or scaling for this routine
hurts the scalability of the NAS MG program and consequendids an inefficient use of

the target parallel system.
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File
g.cafctmp.w2f.f
o o7 PROGRAM rice_rmg_caf j
fctrl=] Lo funa =
Becbraly S |
Scopes 2 b # samples IREW T EREW :“
tice_mo_caf 3.39e08 100.0 | 0.82e00 0.00e00 -
¢4 mg.cafetmpw2f T 87 2 7.50e04 Z2.1% | 0.22e00 0. 00e00
o= 4 Zran3 7.50e04 22.1% |B.22e00 0.00e00
¢ 4 mo.cafetmp w2l 888 7.50e04 22.1% | O.22e00 0. 00200
o 4 7ran3 7.50e04 22.1% | 0.22e00 0.00=00
¢4 ma.cafitmpaw2ff 880 5.40e04 15.9% | 0. 16e00 0. 0000
o= 4 mg3p 5.40e04 15.9% |0.16=00 0.00e00
9 4k mg.cafctmp w2ff 787 4.20e04 12.4% | 0012600 0.00=00
ok cafinit_ 4.20e04 12.4% | 6012600 0. 00200
¢4 mo cafctmp w2 880 1.80e04 5.3% | 0.05=00 0. 0000
o 4+ resid 1.80e04 5.3% |0.05e00 0.00e00
@ mg.cafetrnpow2if 884 1.35e04 4,0% | 0.04200 0, 00e00
o 4 ma3p 1.35¢04 4.0% | 0.04e00 0. 0ienn 1
o 4 mo.cafctmpw2ff 900 1.05e04 5.1% | 0.0Fe00 0. 00=00 i
o 4+ resid 1.05:04 3.1% |0.03200 0.00e00
§ 4 mg.cafetmp w2 789 9.00e03 2.7% |0:03e00 0.00e00
o= cafglobalstartupinit_ 9.00e03 Z2.7% | 0.03200 0. 00=00
¢ 40 mo.cafetmp w2l 6EE3 4.50e03 1.3% | 0.01e00 0.00e00
&4 caf_allmax_dp_pshocky 4,50e03 1.3% | 0.01e00 0. 0000
¢ mg.cafetrnpaw2in 821 4,50e03 1,3% | 0.0le00 0, 00e0n
o= 4 caf_boast i 4,50e03  1.3% |0.01e00 0. 00=00
§- 40 ma.cafetmpaw2ff 884 4,50e03 1.3% | 0.01len 0.00=00
o norm2u3 4.50e03 1.3% |0001enn 0.00e00
¢ 4 mg.cafetrnpw2ff 902 4,50e03 1.3% | 0.01e00 0. 00e00
o= 4k normzul 4.50e03 1.3% |0.01e00 0.00e00
§ 4 ma.cafetmpan2ff 967 4.50e03 1.3% | 0.01ed0 0.00e00 =
o 4§ caffinalize_ 4.50e03 1.3% |0.01e0n 0. 00200
¢ 4 mo.cafctmp w2 T BTET 3.00e03 0.9% |0.01e00 0. 00e00
o 4+ caf_allsurn_dp_pshody 3.00e03 0.9% |0.01e00 0.00e00
§ 4 ma.cafetmpaw2ff 825 3.00e03 0.9% | 0.01ledn 0. 0000
o 4 resid 3.00e03 0.9% |0.01e00 0.00e00
g cafetmp waff 2285 1.50e053 0.4% | 0.00e00 0. 0000 =
1] [ril4] i I [ ¥

Figure 11.9: Screenshot of strong scaling analysis refulGAF MG class A (siz&56°),

using relative excess work on 1 and 64 processors.

By using the top-down analysis with scalability informatiattributed to the calltree
nodes, we obtained information similar to what we obtaineshg the communication
primitives plots and the bottom-up view. Our scaling analysased on expectations is
also more detailed, since it can display calling contexis iartan also show line level
detail.

In Appendix B, we present a proposed extension of CAF withective operations
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File
g.cafctmp.w2f.f
RIS -
(i L SUBROLTINE zran3(Z, b1, N2, NE, M Y, K J
Scopes | # samples IREW T EREW :M
Eran3| 7.50e04 22.1% | 0.22:00 0. 00200 =
¢ mo.cafetmpw2ff GEd4 3.45e04 10,.2% | 0.10e00 0. 00z00
& caf_allmax_|_pshody 3.45e04 10,2% | 0. 10e00 0. 00e0n
¢ 4 mo.cafetmp w2l 5321 Z.40e0d4  7.1% | 0.07e00 0, 00e0n
¢4 cafsynchall_ 2.40e04 7.1% | 0.07=00 0.00e00
¢ 4 Communicationinterface cc: 427 2.40e04 7.1% | D.07e00 0. 0000
&8 ARMCICommunicationlnterface: cafSvnchAll D Z.40804 7.1% | @.07e00 0.00e00
4 ARMCICommunicationinterface.cc: 1712 2.40e04 7.1% |0.07e00 0. 00e00
o= 4¢ ARMCI_Barrier 2.40e04 7.1% | 0.07e00 0. 0000
§ @ rng.cafetmp w2l 5332 £.00e03 1.8% | 0.02=00 0. 0000
¢4 cafgetstrided_ 6.00e03 1.8% |0.02e00 0. 00e00
¢4 Communicationinterface.co: 217 6.00e03 1.8% |0 02:00 0. 00=00
-4 ARMCICommunicationinterface; cafGetStrided{long long™| 5. 00e03  1.8% | 0.02e00 0. 0000
¢ 4 ARMCICommunicationlnterface co: 736 6.00e03 1.8% |0.0Z=00 0. 0000
o= 4 ARMCI_Get 6.00=03 1.8% |0003e00 0.00e00
g4 mo.cafctmp w2l f 5271 3.00e03 0.9% |0.01e00 0.00=00
o=+ cafsynechall_ 3.00e03 0.9% | O.01e00 0. 0000 =
o 4 g cafetmp w2 5324 1.50e03 0.4% | 0.00=00 0.00e00
o4 mo. cafctmp w2l 6722 1.65204 4.9% |0.05200 0. 00e00
¢4 caf_allmin_dp_pshody 1.65:04 4.9% |0.05e00 0.00=00
¢ 4 mg.cafetmp w2l 5617 1.35e04 4.0% | 0.04e00 0. 00200
e 4 cafsynchall_ 1.35e04 4,0% | 0.04e00 0. 0000
o=@ mg.catetmp w2 S567 1.50e03 0.4% | 0.00e00 0.00e00
o= 4f mo.cafetmpw2ff 5628 1.50e03 0.4% | 0.00=00 0. 00200
¢ 4r mog.cafotmp w2 f GEA32 1.50e04 4.4% | 0004200 0.00=00
¢ caf_allmax_dp_pshody 1.50e04 4.4% |0.04e00 0. 00=00
¢4 mo.cafetmp w2l 5469 1.05e04 3.1% | 0.03e00 0. 0000
o= 40 cafsynchall_ 1.05:04 3.1% |0.03e00 0.00e00
o 4 mg.cafetmp w2l 5480 3.00803 0.9% | 0.01=00 0. 00200
o 4 mo.cafetmp w2l 5419 1.50e03 0.4% |0.00e00 0. 00=00
¢4 mo.cafetmp w2 4558 3.00e03 0.9% | 0.01edD 0.00=00
o= 4+ yranlc_ 3.00e03 0.9% |0.01e00 0.00=00
g cafctmpaw2ff 4619 3.00e03 0.9% | 0.01e00 0. 00e00 —
o= g cafetmp w2 4707 1.50e03 0.4% | 0.00e00 0. 00e00 -]
1] Il | 4] Il | [ ]

Figure 11.10: Screenshot of strong scaling analysis e$oift CAF MG class A (size

2563), using relative excess work on 2 and 64 processors, footltinezr an3.

at language level and an MPI implementation strategy. FoF GAG we were able to
reduce the initialization time by 40% on 64 CPUs by using allective operations CAF

extensions.
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100% 1 - . By 1 | mMPI_Init
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Figure 11.11: Scalability of relative costs for communi@afrimitives and computation
for the CAF version of the NAS SP benchmark class A (6i£9.

11.4.3 Analysis of the NAS SP Benchmark

NAS SP is a simulated CFD application that solves systemsgjoateons resulting from
an approximately factored implicit finite difference distization of three-dimensional
Navier-Stokes equations [24]. SP solves scalar pentasdagystems resulting from full
diagonalization of the approximately factored scheme.[24je CAF version of SP was
described in Section 6.3. In Figure 11.11 we present thealsiti&y of relative costs for
communication primitives and computation for the CAF vensof NAS SP; the excess
work indicated by the layered chartfi$% on 64 CPUs. The profiling overhead was 1-8%
for CAF NAS SP.

The results in Figure 11.11 show that as the number of proceggows, the cost of
sync_not i f y becomes significant. Using the bottom-up viewhpicvi ewer we deter-
mined that 27% of theync_not i fy cost on 64 CPUs is due to the calls in the routine
copy _f aces. The cause for this cost is the implementation ofdh@c not i f y seman-
tics: a notify to an image Q from P is received by Q only aftécammunication initiated
by P to Q has completed. In practice, this means that befetgnig the notify, image P

polls until all PUTs from P to Q have completed, thus exposing the latency of apmm
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CPUs| PUTs PUT vol | GETs | GET vol | notifies | waits | barriers
1 0 0 8 188 | 4423| 2412 25
4 4818 | 493548288 5 104 | 9643| 9642 27
9 7224 | 440017888 5 104 | 14455| 14454 27
16 9630 | 372426064 5 104 | 19267 | 19266 27
25 12036 | 321252016 5 104 | 24079| 24078 27
36 14442 | 280289968 5 104 | 28891 28890 27
49 15120| 216247680 51 212 | 30252| 30246 17
64 19254 | 218391120 5 104 | 38515| 38514 27

Figure 11.12: Communication and synchronization voluntaélie CAF version of NAS
SP, class A (siz643).

nicating the data. A solution to this problem would be to haupport for non-blocking
synchronization while maintaining the same semantics,adtgr issuing &ync_not i fy
the sender process images continues execution; howegatestination image would still
receive the notify after the completion of communicatiosuisd by the sender process.
Currently such support is missing from both ARMCI and GASNlettaries. 47% of the
sync_noti fy cost on 64 CPUs is due to the “handshakes” necessary for camaiu
tion in the sweep routines,_sol ve, y_sol ve andz_sol ve. Notice that the number
of sync_noti fys andsync_wai t s is slightly more than double the numberFifTs.
This is due to the fact that the CAF version was adapted fraanMP| version, and we
used a basic pattern of conversion from 2-sided commupitéati the MPI version to the
one-sided programming model of CAF. An MPI send/receivermomication pair such as
that presented in Figure 11.13(a) is replaced with the chdes in Figure 11.13(b).

In Figure 11.12, we present a summary of the user-definedaséar the volume of
communication and synchronization. The communicatiomwa summary results show
that the number oPUTs increases aB?, whereP is the number of processors. This is due

to the multipartitioning distribution. The number of hahdkes increases with the number
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call sync_wait(Q

p: ... put to Q...

call MPl_send call sync_notify(Q

Q Q

call Ml _recv call sync_notify(P)

call sync_wait(P)
. consune the data Q...

a) Two-sided communication  b) One-sided communication

Figure 11.13: Basic pattern of conversion from two-sidedsage passing communication

in MPI into one-sided communication in CAF.

of processors by the same function, with a multiplicativeda of two. The majority of the
notifies’ cost is due to the blocking implementation of nesfused to signal the completion
of thePUTs from P to Q.

A previous study [57] identified the conversion of MPI 2 sidemmmunication into
one-sided communication as a problem, and suggested the&f nsativersion buffers as
a solution for the exposed latency while waiting for the résrtauffer to become available
for remote write. For NAS SP, during the forward substitatphase, the waiting for the
buffer on Q to become available for writing represents o8ty the forward substitution
time. For the backward sweep, the waiting for the remotedou&f become available takes
up to 17% of the backward sweep time. This suggests that nsuttgyersion buffers might
benefit more the backward substitution phase.

Figures 11.14 and 11.15 show screenshots of the stronghgcatialysis results for
the CAF version of NAS SP on 4 and 64 CPUs. The results in Figar&4 show that
the value of[REW for the main routinerpsp is 53%; this is slightly higer than the
excess work 051% indicated by the layered chart in Figure 11.11, due to poalirsg of
local computation. The non-scalability is explained by #tg routine, which performs
alternate direction integration, with a metric 8%. In Figure 11.15, we analyze the
scalability ofcopy _f aces, which exchanges overlap values between cellgy f aces

has al REW score ofl6% and anE REW score 0f4%; this means that the computation
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File
di.cafctmp.w2e.
O CALL addd =
..... -
Scopes ;g # samples IREW EREW j‘l
mpsp 3.59e06 100.0 | 0. 53e00 0. 000 ES
¢ 4t spocafctmpw2if 599 | 3.5le0f 95.0% | 0.51=00 0.00e00
¢4 mpsp_pshody 3.51eld 95.0% 0.51e0n —-0.00e00
¢ 4+ sp.rafeimpw2if 466 3.48e06 96.9% | 0,510 0.00e00
e adi 3.48e06 96.9% | 0.51e00 0.00e00 =
74 adicafetrmpawlff 161 1.13=06 31.6% | 0.16e00 0.00e00
& 4 copy_faces 1.13e06 31.6% | 0.l6e00 0.00e00
§ 4 adicafetrnpawItf 164 7.24e05 20.2% | 0.12s00 0.00e00
o= y_solve 7.24e05 20.2% | 0.12e00 0.00e00 L3
¢+ adi caftmpw2in 165 7.58e05 21.1% | 0.12e0d 0.00e00
o= i 7_s0lve 7.58e05 21.1% | 0. 12e00 0.00=00
¢ 4 adicafctmpw2if 163 7.43e05 20,9% 0.11=00 0.00e00
o= 4t ¥_solve 7.48e05 20.9% | 0.11e00 0.00e00
o+ adi.cafctmpawff 162 4.05e04 1.1% | 0.00e00 0.00e00
e+ adi.cafctmpawIif 166 7.35e04 2.0% | -0.00e00 0.00e00
o= 4 spocafitmpwiff 419 9.00e03 0.3% | 0O.00e00 0.00e00 =
o= 4 an cafctron w2 ff 467 Ao nfar [y Bt e O Ofeno P
4] ]l Il | [»]

Figure 11.14: Screenshot of strong scaling analysis efultthe CAF version of NAS

SP class A (sizé4%), using relative excess work on 4 and 64 CPUs.

in copy _f aces is also responsible for scalability loss. By investigatthg call sites
in copy_f aces, we notice that a call toot i fy has anf REW scores 0f0%. This is
consistent with the communication primitives scalabilggults, which pointed toot i f y

as a major non-scalable part of the communication costs.

11.4.4 Analysis of the NAS CG Benchmark

To evaluate the applicability of the expectations-baseadirsg analysis to UPC codes, we
analyzed the UPC version of NAS CG. The CG benchmark uses jagaie gradient
method to compute an approximation to the smallest eigaaalia large, sparse, symmet-
ric positive definite matrix [24]. This kernel is typical ohstructured grid computations
in that it tests irregular long distance communication angpleys sparse matrix vector
multiplication. The UPC version of NAS CG was described ictiea 7.4.

In Figure 11.16, we present a screenshot of the scaling sinaigsults of UPC NAS
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File
di.cafctmp.w2f.f
(1] 83 SUBROUTINE adif |J
Scopes # samples IRBwW T EREW ﬁ-‘l
] 3.48e06 96.9% | 0.51s00 0.00=00 -
¢ & adicafctmpwff 161 1.13e06 31.63% 0. leedn 0.00e00
¢4 copy_faces 1,.13e06 31.6% | 0.lee0n 0.00e00 3
¢ & copy_faces caftmpw2if 716 1.13e06 31.6% | 0,16e00 0.00e00 T
¢ 4 copy_faces_pshody 1.13e06 31.6% | O.l6end 0.04e00
7 copy_faces.cafctmp w2fr 504 3.65e05 10.25 | 0.0%=00 0.00=00 .
@ cafruntime_mp_cafsynchnotifescalar_ 3.65e05 10.25 | 0.08=00 0.00=00
¢4 CafRuntirme.fa0; 133 3.65e05 10.2% | 0.09=00 0.0000
¢ cafruntimesynchnotify_ 3.65e05 10.2% | 0.0%=00 0.00e00
¢4 Communicationinterface cc; 440 3.65e05 10.2% 0. 0900 0. 00e00
¢ @ ARMCICommunicationinterface:cafSynchl 3. 65e05 10,22 | 0, 09e00 0. 00e00
Poar ARMCICommunicationinterface.ce: 196 3. 65e05 10,23 0.09e00 0.00e00
o= 4 arrmci_notify 3.65e05 10.2% | 0.0%=00 0.00e00
o= copy_faces.cafctmp w2 506 3.90e04 1.1% | 0.0le00 0.00=00
copy_faces.cafctmp w2if 555 2.25204 0.6% | 0.0le00 0.01e00
o= 4 copy_faces.cafttmpwff 510 1.65e04 0.5% | 0.00e00 0. 0000
copy_faces.cafctmpwaff 609 1.50e04 0.45 | 0.00200 0.00e00 gy
4] Il [r]«] Il | [*]

Figure 11.15: Screenshot of strong scaling analysis efultthe CAF version of NAS
SP class A (sizé4?), using relative excess work on 4 and 64 CPUs, for the routine

copy f aces.

CG, using relative excess work on 1 and 16 CPUs. The main pnodosesid’ effi-
ciency, out of which th&onj _gr ad routine, which performs conjugate gradient compu-
tation, accounts foB87% loss of scalability. By further analyzing the calling caxttéree,

we determined that two calls teeduce_sumcosted15% and5%, respectively, and that

a call toupcr .wai t accounted fo6% loss. The source code correlation showed that
reduce_sumhas a suboptimal implementation, using barriers; a satutiould be to

employ one of the UPC collective operations.

11.4.5 Analysis of the LBMHD Benchmark

We described the MPI implementation of LBMHD in Section 3.2nd described our CAF
implementation decisions in Section 8.2. In Figure 11.1pvesent the scaling of relative

cost for communication primitives and for computation abdlty for the CAF version of
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e fusers/ceristifResearchice-caf-experiments/binfcgu.A. 16 I:|@|zl
File
0.C
1844 double reduce_sumi double rs_al =
1645 |
© 1546 intre_i
1647 intrs_no;
1648
1549 #f(TIMERS_EMAELED == TRLUE}
1550 timer_stat(TIMER_ALLREDUGCEY:
18451 #Fendif
16582
1553 upc_barrier;
[ T
16585 rs_o={nr_row* KNUM_PROC_COLS);
1556 for(rs_i=rs o0 rs_i=(rs_o+hUNM_PROC COLSY rs_i++)
14847 { ||
1558 it rs_i == MYTHREAD ) I=|
146458 { ~|
Scopes @ @@ # samples IREW T EREWW ﬁ“
& user_main 7.47e05 51.7% | 0.44e00 0.0%e00 =
4 oo 414 6.58e05 45.6% | 0.3%9=00 0.03200
¢ & conj_grad 5.30e05 36.7% | 0.37=00 0.01e00
9 oo 1380 2.11e05 14.6% | 0.15=00 0. 00200
¢4 reduce_sum 2.10e05 14, 5% | 0.15200 0, 00200
o 4 [cgo 1554 1.47e05 10.2% | 0.10e00 | 0. 00200
o= 4 co.c 1573 3.15e04 2.2% | 0.02e00 0. 00200
o gasnet_extended.h: 592 3.15e04 Z2.2% |0.02e00 0. 00e00
§ @ gasnet_exended h: 574 §.40e04 5.8% | 0.06=00 0. 00200
o= 4+ gasnete_try_syncnh 7.35e04 5.1% | 0.05=00 0. 0000 T
o gasnete_get_nb_bulk 4.50e03 0.3% | 0.00e00 0.00e00
9 4 coc 1322 7.95e04 5.5% | 0.06=00 0. 00200
=4k _upcr_wait 7.95e04 5.5% | 0.06e00 0. 00e00
e 4 oo 1420 T.50e04 5,2% | 0,05e00 0.00e00
o= 4 reduce_sum 7.50e04 5.2% | 0.05=00 0.00e00
¢ 4 cgo 1301 4.35e04 3.0% |0.03e00 0. 00200
o= g _upcr_wait 4,05e04 2.8% | 0.03=00 0.00200
o= 4 _upcr_natify 3.00e03 0.2% | 0.00e00 0. 00e00 =
4 cocr 1334 1.50e04 1.0% | 0.0Le0n 0. 00200
= _Lpcr_wait 1.20e04 0.8% | 0.0L=00 0. 00e00
o=k _upcr_natify 3.00e03 0.2% | 0.00e00 0. 00e00
¢ 4 cgc 1429 7.50e03 0.5% | 0.0Le0n 0.00200
o= 4 reduce_sum 7.50e03 0.5% |0.0le0n 0. 00e00
o 4 cg.oo 1481 4.50e03 0.3% | 0.00e00 0. 00e0n -
< QK Il .|

Figure 11.16: Screenshot of strong scaling analysis for NRS CG class A (siz&4000),

using relative excess work on 1 and 16 CPUs.

LBMHD. The overall loss of efficiency on 64 CPUs indicated by tayered chart is of
39%. In Figure 11.19 we present a summary of the user-defiretdas for the volume
of communication and synchronization. The profiling ovahevas of 7-16% for CAF

LBMHD.
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SR W MPIL_Init
B ARMCI_Fence
B ARMCI_Barrier
80% W ARMCI_Wait
= W ARMCI_MbGetS
8 anod ARMCI_Gets
v ARMCI_NbGet
é W ARMCI_Get
% 40% - Campteton W ARMCI_NbPUts
24 ARMCI_PutS
B ARMCI_MbPuUt
=] ARMCI_Put
W armci_notify_wait
0% T T T T T armci_notify
4 = 16 25 36 49 64  ARMCI_Finalize
Number of processors mARMCI_Init

computation

Figure 11.17: Scalability of relative costs for communigatprimitives and computation
for the CAF version of the LBMHD kernel, size)242.

The relative costs scalability graph show that the cost ofidra for the CAF version
increases with the number of CPUs. Figure 11.19 shows thiaeasumber of CPUs in-
creases, the volume &1UTs per process image decreases, but the number and volume of
CETs and the number of barriers stay constant. Bg&ffis and barriers were used to imple-
ment reductions at the source level in the original LBMHD reeucode that we received
from LBNL. The CAF implementation was performing three cerigive reductions on
scalars. We first replaced the three scalar reductions widt®r reduction defined at lan-
guage level as described in Section 11.4.2; that solutiasméoptimal since the vector
reduction used multiple barriers. By replacing the thremascreductions with a three-
element MPI vector reduction, performance improved by 25064 processors, as shown
in Figure 11.18, that presents parallel efficiency for tmeetl phases of MPI and CAF
versions of the LBMHD benchmark. As we mentioned in SectitrB1the excess work
indicated by the layered charts and computed by the autahsatding analysis applies to
the entire application, not just the timed phase of it. Te®&itts points that it is important to
use the appropriate collective primitives, but also to teedfor efficient reduction support

at the language level.
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Figure 11.18: Parallel efficiency for the timed phases of Ml CAF variants of the
LBMHD kernel on an Itanium2+Myrinet 2000 cluster.

In Figures 11.20 and 11.21, we present screenshots withigedstrong scaling anal-
ysis for CAF LBMHD, using relative excess work, on 4 and 64 GPWhe results in
Figure 11.20 show that theREW score for the main routinehd is 53%. The rou-
tine deconp, which performs the initial problem decomposition, hashbbk EWW and
EREW scores ofl4%, which means that the lack of scalability is due to local catap
tion. caf i ni t has al REW score ofl0%, caused bWwPI _I ni t andARMCI _| ni t . The
routinest r eamhas an/ REW score 0f9%. The routinecaf _al | sumdp has/REW
scores 06%, 6%, and5%. This points to the inefficiency of user handcoded redustion
similar to the lesson learned from the bottom-up semiautisraaalysis. In Figure 11.21,
we present the analysis results for the routste eam The main routine contributing
to the non-scalability score aft r eamis nei ghbor s, which updates the ghost cells of
the neighborspei ghbor s has a value of % for TREW and1% for EREW . Within
nei ghbor s, one calls tomot i fy has anf REW score ofl% and three calls toot i f y

have a score of% each. Note that the overall excess worksdfs is significantly higher
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CPUs| PUTs| PUTvol | GETs| GET vol | notifies | waits | barriers
4 200 | 22195200 33 264 200 | 200 107
9 200 | 14808000 33 264 404 | 404 107
16 200 | 11136000 33 264 404 | 404 107
25 200 | 8889600 33 264 404 | 404 107
36 200 | 7420800 33 264 404 | 404 107
49 200 | 6384000 33 264 404 | 404 107
64 200 | 5606400 33 264 404 | 404 107

Figure 11.19: Communication and synchronization volumetfe CAF version of

LBMHD (size 10242).

than the excess work 80% indicated by the layered chart in Figure 11.17; this is due to
poor scaling of local computation, such as the one perforyeithe routinedeconp. In
Appendix B we present a proposed extension of CAF with colle@perations primitives

at language level and an MPI-based implementation stratBgyusing the CAF exten-
sions, we were able to achieve an improvement of LBMHD of 25264 processors, and

the translation to MPI collectives didn’t introduce sigoént overhead.

11.4.6 Analysis of a MILC Application

MILC [25] represents a set of parallel codes developed ferdtudy of lattice quantum
chromodynamics (QCD), the theory of the strong interactimirsubatomic physics. These
codes were designed to run on MIMD parallel machines. Thewaitten in C, and they are
based on MPI. MILC is part of a set of codes used by NSF as peavemt benchmarks for
petascale systems [152,153]. The latest version of MILG @fdhe time of this writing,
uses the SciDAC libraries [4] to optimize the communicatiothe MILC application. We
present an analysis of the version 7.2.1 of MILC using MPl@smunication substrate.
Our goal is to demonstrate the applicability of our metholliRi-based codes that are used

with weak scaling.
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2 [fusers/ccristifResearchicc-caf-experiments/bin/mhd-caf-0111 |._”EI El
File
hd.cafctmp.w2fr
0 i PROGRAM mhd =
Scopes 3 # samples IREW T EREW :M
X
Imhd] 5.76e05 100.0 | 0. 55800 0.01e00 -
¢ 4 mhd.cafetmpaw2ff, 285 5.55e04 14,75 | 0.14s00 0. 00200
o 4 decarnp 555204 14.75 | 0.14e00 0, 14200
94+ rmhd.cafetmp w2l 242 F.90e04 10,4% | 0. 10=00 0. 0000
o= 4 cafinit_ 3.90e04 10.45 | 0.10=00 0. 00e00
74 mhd.cafetmpoaw2ff 314 7. 65204 20.3% | 0.08:200 0. 0000
o 4+ stream 7.65204 20.3% | 0.03200 0.02e00
§ @ rahd cafetrmpow2if 1599 Z.25e04 6.0% |0.08200 0, 00200
¢4 cafl_allsum_dp Z.2Beld &.0% |0,05200 0, 00e0d
-4 mhd.cafetmpawin 1713 1.20e04 3.2% | 0.03=00 0. 00e0n
¢4 cafsynchall_ 1.20e04 3.2% | 0.03=00 0. 00=00
¢ 4 Communicationinterface co: 427 1.20e04 3.2% | 0.03=00 0. 00=00
4 ARMCICommunicationlnterface:cafSvnchAll D 1.20e04 3.2% | 0.03=00 0. 00e00
9 d ARMCICommunicationinterface.ce: 1712 l.20e04 3.2% | 0.03e00 0. 00e00
o= 4+ ARMCI_Barrier 1.20e04 3.2% | 0.03200 0. 00e00
i 4 mhd.cafetmpaw2ff 1670 4.50e03 1.2% |0.01=00 0. 00200
e 4 cafsynchall_ 4,50e03 1.2% |0.01e0d 0. 00e00
§ & mhd.cafttmpawff 1730 4,80e03 1,2% |0.01e00 0, 00200 =
o 4 cafgetstridad_ 4.50e03 1.2% | 0.01e00 0. 00enn
o= 4 mhd.cafetmpawaff 1727 1.50e03 0.4% | 0.00=00 0.00:00
¢4 mhd cafetmp w2 1601 2.10e04 5.6% | 0.06:200 0. 0000
o caf_allsum_dp z.10e04 5.6% | 00600 0. 00e00
§ & mhd.eafetmpaw2ff 1713 1.05e04 2.8% | 0.03200 1, 00e00
o= 4 cafsynchall _ 1.05e04 2.8% | 0.03e00 0.00e00
¢4 mhd.cafttmpawaff 1730 7.50e03 Z.05 | 0.02e00 0. 00e0n
o= cafyetstrided 7.50e03 2.0% | 0.02=00 0. 00e00
o= 4 mhd.cafctmpw2ff 1670 3.00203 0.8% | 0.01200 0. 00=00
94+ rmhd.cafetmpow 2 1600 1.95e04 5.2% | 0.05=00 0. 0000
@4 caf_allsum_dp 1.95=04 5.2% |0.05:=00 0. 00e00
74 mhd.cafttmpawaff 1719 7.50e03 2.0% | 0.02=00 0. 00e00
o 4k cafsynchall_ 7.50e03 2.0% | 0.02e00 0. 00e00
§ @ mhd.cafetmpoaw i 1730 £.00e03 1.6% |0.02200 0, 00200
o= 4p cafgetstrided_ 6.00e03 1.6% | 0.02e00 0.00e00
o 4 mhd.cafctmpaw 2 1670 4.50e03 1.25% | 0.01e00 0. 00e0n | |
o 4 mhd.cafctmpw2if 1722 1.50e03  0.4% |0.00200 0. 0000
¢4+ rmhd. cafetrmp w2 244 7.50e03 Z.0% |0.02e00 0. 0000
o= 4 cafglobalstartupinit_ 7.50e03 2.0% |0.02200 0.00e00
74 mhd cafotmpow 2t 345 6.00e03 1.6% |0.01=00 0. 0000
o= 4+ caffinalize_ 6.00203 1.6% |0.01e00 0. 0000 Lol
e 4+ rnhd.cafetmpow2if 262 1.| S0e03  0.4% | 0.00e00 Dl. a0e0n | l;
4] [ »]« [l »

Figure 11.20: Screenshot of strong scaling analysis farlCAF LBMHD (size10242),

using relative excess work, on 4 and 64 CPUs.

From the MILC codes we analyzed the suf3d application, which is a Kogut-Susskind
molecular dynamics code using the R algorithm. We choserqutisizes so that as we

increased the number of processors, the work on each poyaessains constant. The
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i fusersiceristifResearchice-caf-experiments/bin/mhd-caf-0111 [ZJE“:I
File
hd.cafctmp.w2ff
l;) 615 SUBROUTIME streamiFEG_LocPir, FEQ Handle, GEQ_LacPtr, GEQ_Handle) il
Scopes @l l@’l # samples © IREW EREW % |
stream 65204 20.3% | 0.0%:=00 .02e00 el

e mbd.cafetmpow2if 775
¢4 neighbours
¢ 4 mhd.cafctmpw2ff 1451
¢4+ cafruntime_mp_cafsynchnotifyscalar_
g4 CafRuntimefa0; 142
- cafruntimesynchnotify_
¢ 4 Communicationinterface.cc: 440
940 ARMCICommunicationinterface: cafSynchiatifidin
¢ @ ARMCICommunicationinterface.cc 1746
o= 4r armci_natify
@4 mhd.cafetmpaw2ff 1211
o= 4 cafruntime_mp_cafsynchnatifyscalar_
¢4 mhd.cafctmp w2ff 1 261
&=+ cafruntime_mp_cafsynchnotifyscalar_
¢ 4 mhd.cafetmpaw2in 1401
o= 4 cafruntime_mp_cafsynchnotifvscalar_
¢ @ mhd.cafetmpaw2ff 1453
o= cafruntime_mp_cafsynchwaitscalar_
mhd.cafetmpw2ff 1294
mhd.cafetmp w2ff 1254
o= 4k mhd.cafctmpow2ff 1 307
o=+ mhd.cafctmpaaff 1350
mhd.cafetmp w2ff 1379
mhd_cafetmp w2t 1419
mhd._cafetmpw2ff 1509
o= i mhd.cafetmpw2in 1540
mhd.cafctmpwif 782

45204
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Figure 11.21: Screenshot of strong scaling analysis farlCAF LBMHD (size1024?),

using relative excess work, on 4 and 64 CPUs, for the rogtimeeam

expectation is that the overall running time is the same gnramber of processors. In
Figure 11.22, we present a screenshot of the weak scalingsaaesults for su3md
using relative excess work on 1 and 16 CPUs. Overall,reud loses32% efficiency. A
calltoks_congr ad_t wo_sr c is responsible fot0% I REW , a call toupdat e _h leads
to 7% loss of efficiency, and two calls @r sour ce_i np cause€’% I REW each.

Next, we focus on the loss of scalability withis _congr ad_t wo_sr ¢ in Figure 11.23.
A call to ks_congr ad accounts fo’% [ REW, while a second call t&s_congr ad
leads to2% [ REW . Within the first call toks_congr ad, the routind oad_f at | i nks
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sud_rmd EJ[E|EI

File
ontrol.c
rﬂ 23 maine int arac, char =argw ) |i|
Scopes |g| |§'| # samples IREW & EREW ;M
main 1.76e08 100.0 | 0,32=00 0. 00e00 Fr
¢4 cantrol.c; 55 1.71e08 27.0% | 0.31e00 0. 00e00
-4 update 1.71e08 97.0% | 0.31=00 0.00e00
¢ 4 update.c: 94 4,67e07 26.5% | 0.10200 0.00=00
ok Ks_congrad_two_src 4.67e07 26.5% |0.10e00 0. 00200
¢4 update.c 102 4.26e07 24.2% | 0.07e00 0. 0000
o= update_h 4.26e07 24.2% | 0.07=00 0. 0000
¢ 4 update.c 77 4.05e07 23.0% | 0.07=00 0. 0000
o= 4 grsource_imp 4.05e07 23.0% | 0.07=00 0. 00200
¢4 update.c; 81 4.05e07 23.0% | O.07e00 0. 00=00
e~ grsource_imp 4.05207 23.0% |0.07e00 0.00z00 =
= 4+ update ;100 7.35804 0.0% | 0.00800 0. 0000
o= 4k update.c; 128 l.26e05 0,1% | 0.00=00 0. 00200
updatec: 131 1.20e04 0.0% |B.00e00 0.00=00
o= 4 update.c 132 3.75e04 0.0% | 0.00e00 0.00s00
update.c: 133 1.35e04 0.0% | 0.00e00 0, 00e00
o= 4+ update . 38 7.85e04 0.0% | 0,00=00 0. 00e00
o= 4+ update.c, 75 1.29e05 0.1% |0.00e00 0.00e00
& 4+ update o 79 1.28e05 0.1% | 0.00e00 0.00:00
update.c: 80 1.50e03 0.0% |0.00200 0.00=00
o= 40 update.c: 84 1.28205 0.1% | 0.00e00 0. 00200 |
o= 4 update.c. 89 §.25e04 0.0% | 0.00e00 0.00e00
¢ 4 controlc: 70 4.11e06 2.3% | 0.01=00 0. 00200
o 4 T_neas_imp 4.11e06 2.3% | 0.01200 0, 00e00
o= 4 control.c: 71 7.44e05  0.4% | 0.00200 0. 00=00 -
1] 2 El Il | [ ]

Figure 11.22: Screenshot of weak scaling analysis resulsf3rmd using relative excess

work on 1 and 16 processors.

has anTREW of 7%. Within both calls toks_congr ad, several calls to the routine
dsl ash_fn_fiel dspeci al have a cumulatedREW of 4%.

In Figure 11.24, we present a screenshot of weak scalingfséeugr sour ce_i np.
The results show that the routimead_f at | i nks loses agairr% IREW . Overall,
| oad_f at | i nks is responsible fo21% of the loss of scaling. We present a screenshot
of scaling analysis results féroad f at | i nks in Figure 11.25. Theat h_pr oduct
routine accounts fot% IREW out of 7% IREW for | oad_fatlinks. Inside the
routine pat h_pr oduct , several calls tavai t _gat her account for3% IREW. By

correlating the CCT node with the source code, we deterntimetthai t _gat her waits
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File
_congrad5_two_src.c
(i) 7 intks_congrad_two_srof = Return value is nurmber of iterations taken = i'
: e o :
| -
Scopes |4Q_| l%. # samples IREW T EREW — |
i)
ks_congrad_bwo_sro .67e07 26.5% | 0. 10200 . 00enn -]

& 4 d_congrads_two_srec: 23
¢ <4 ks_congrad
¢4 d_congradd_fn.c; 87
e 4§ |oad_fatlinks
&4t d_congrads_fre: 209
o= 4+ dslash_fn_field_special
@4 d_congrada_fn.c: 210
e dslash_fr_field_special
o= 4 d_congrad5_fn.c: 86
o= 4 d_congrada_frc 127
o4 d_congrada_fn.c: 128
o= 4 d_congrada_fh.c: 204 LA5aDg
o= 4 d_congrada_frc 205 - O0e0d

4
4, 34807 24.6%
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]
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]
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Figure 11.23: Screenshot of weak scaling analysis resulgif3rmd using relative excess

work on 1 and 16 processors, for the routke.congr ad_t wo_sr c.

for a series of MPI sends and receives to complett h_pr oduct also exhibits al %
EREW, showing that the time spent insigat h_pr oduct increases as the number of
processors increases.

In Figure 11.26, we focus on the cost of the routide$ ash_f n_f i el d_speci al
called inks_congr ad. The results showed that agaiai t _gat her is a culprit.

Overall, we demonstrated that our scaling analysis tecten@an be applied as well

to the analysis of weak scaling parallel codes, and it pditdea communication routine,
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File
rsource_imp.c
9 14 void grsource_impifield_offset dest Real mass, int parity) { |j
..................................................... |A|
Scopes -ﬂ 5%5 # samples IREW T EREW :i
-
larsource_imp] 4,05:07 23.0% | 0,07=00 0.00enn -
9 grsource_imp.c: 30 4. 01e07 22.7% | 0.07e00 0.00e00
o= 4 |nad_fatlinks F.60e07 20.4% | 0.07e00 0.00=00
o= greource_imp.c: 20 3.60e04 0.0% |B.00200 0.00=00
G= 4k grsource_imp.c: 29 2.72e05 0.2% | 0.00=00 0. 00=00
o= 4 grsource_imp.c: 32 7.65e04 0.0% |3.00e00 0, 00200
o= 4 greource imp.c 33 4.50e03  0.0% |0.00e00 0. 00=00
grsource_imp.c. 34 1.50e03 0.0% |0,00e00 0. 00=00 -l
-
4] [¥]«] Il | [¥]

Figure 11.24: Screenshot of weak scaling analysis resulgif3rmd using relative excess

work on 1 and 16 processors, for the routgresour ce_i np.

wai t _gat her, as a significant source of inefficiency.

11.5 Discussion

Performance analysis based on expectations is a powecfuhitpue. It is applicable to a
broad range of applications because it is not limited to ariqular programming model.
By using a metric based on the fraction of excess work prasemnt execution, we focus
attention on what matters; absolute scalability is less/eeit than the overall cost incurred
in an execution due to lack of scalability.

In this chapter we presented novel parallel scalabilityammsmethod based on call path
profiles, which automatically computes scalability scdoe®ach node in a program’s call-
ing context tree. We focused on using the expectation oéfisealing to analyze parallel
executions that represent studies of strong scaling, aed erpectations of constant time
for a weak scaling study. We also described a semiautomationonance analysis of scal-
ability for computation and synchronization primitives fdP1 and CAF benchmarks. We
presented the insight gained with our analysis methodgimascalability problems of the

NAS benchmarks (MG, SP, and CG), the LBMHD benchmark, LANRGP application,



Esuii_rmd
File
um_mpli.l: ; o
€ 1532 wait_gatherimso tag *mtag) S
1583
1584 MPI_Status status;
1585  inti;
1586 #ifdef COM_CRC
1587 intfail =0, work= 0,
1588 #endif
1589
1540 Feait for all receive messages ™ -
1591 for(i=0; i=mtag-=nrecvs; i++){ =|
0 1592 M P1_Waiti &mtag-=recy_msogsfil. mso_req, &status );
1593 1
1594
1595 Fwaitfor all send messages *f
1596 for(i=0; i=mtag-=nsends; j++ {
€ 597 MPI_Wait] &mtag-=send_msgsilms_red, &status ),
1598 1 -
Scopes @ @@I # samples IREW T EREW =
load_fatlinks 3, 62007 20.5% | 0.07e00 0. 00e00 Bt
g fermion_links_fr.c 269 3.37e07 19.1% | 0.07=00 0.00200
@4+ path_product 1.74e07 9.8% |0.07e00 0, 0Le00
q & path_product.e: 120 1.62e06 0.9% |0.01e00 0. 00end
¢ fwait_gather 1.19206 0.7% | 0.01e00 | o.o0eon
¢ 4+ com_mpi.c: 1592 6.98e05 0.4% | 0.01e00 0. 00e00 "
o= 4+ P _WWait £.98e05 0.4% |0.01e00 0. 00e0n I
¢ 4 com_mpi.c 1637 4,.83e05 0.3% |0.00200 0. 00200
o 4 MPI_Allreduce 4,78205  0.3% |0.00e00 0. 00e0n
¢ 4 com_mpi.c: 1587 1.05e04 0.0% | 0.00e00 0.00e00
o 4 MPI_WWait 1.05e04 0.0% |0.00=00 0.00=00
G4 path_product.c: 179 1.31e06 0.7% |0.01=00 0. 00e00
o= ¢ wait_gather 9.24e05 0.5% |G.01e00 0, 00200
§ 4+ path_product.c; 105 7.58e05 0.4% [0.01=00 0. 00200
o= 4p weait_gather 5.60e05 0.3% |0.00e00 0. 00=00
o 4 path_producte: 163 £.30e05 0.4% | 0.00e00 0. 00e00
o g path_product.c: 157 §.13205 0.5% |0.00=00 0. 00200
=4 path_product.c: 217 4,59e05  0.3% | 0.00e00 0. 00=00
o= path_product.c: 78 4.60e05  0.3% | 0.00e00 0.00e00
e 4 path_product.c: 99 f.54e05 0.4% |0.00=00 0. 00200
o= 4 path_product.c: 136 4.24e05 0.2% |0.00=00 0, 00=00
o= 4+ path_product e 176 £.31e05  0.4% |0,00e00 0. 0000 -
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Figure 11.25: Screenshot of weak scaling analysis resulgif3rmd using relative excess

work on 1 and 16 processors, for the routiread _f at | i nks.

and of an MPI-based MILC benchmark. We determined that ttied&reductions support
in the CAF language led to suboptimal and non-performanceple implementations of
reductions as CAF source-level libraries; replacing naddrctions with MPI reductions

yielded time improvements as high as 25% on 64 processothddtBMHD benchmark.
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File
om_mpi.c
1582  weait_gathermsg tag *mtag) =
1883 {
1884  MPI|_Status status;
1885  inti;
1886 #ifdef COM_CRC
1887 intfail=0, wark= 0
1588 #endif
1589
1580 Fweait farall receive messages %
1591 forii=0; i=mtag-=nracvs; i++1§ E
0 1542 MPI_Wait! Emtag-=recy_msasfilmsa_req, &status ),
1583 %
1594
1595 Mwaitfor all send messages *f
1586 for(=0; i=mtag-=nsends; j++) {
0 1597 MPI_Waitl &mtag-=send_msosi]l.msd_red, &status );
1588 3 =
1589 #ifCOM_CRC s
Scopes @ @@ # samples IREW 5 EREW 3
ks_congrad 4,31e07 24.4% | 0.08200 0.00e00 =
§ 4 d_congrada_frc: 87 4,02e07 22.8% | 0.07200 0.00e00
o= 4 |nad_fatlinks 3.62e07 20.5% |0.07=00 0.00e00
9 4 d_congrad5_fr.c: 209 1.16e06 0.7% |0.01=00 0.00200
¢4 dslash_fn_field_special 9.30e05 0.5% |0.01=00 0.00e00
¢ dslash_fnZ.c: 413 7.50e04 0.0% |0.00=00 0. 00edn
o 1.95:04 0.0% | 0 | 0. 00e00
¢4 dslash_fn2.c: 363 £.90e04 0.0% | 0.00e00 0.00e00
o 4 wait_gather 3,00e04 0.0% |0.00e00 0. 00e0n
o @ dslash_fhZ.e: 305 5.25e04 0.0% |0.00=00 0.00200
=4 dslash_fn2.c: 362 7.95e04 0.0% |0.00=00 0.00=00
o= 4 dslash_fmZ.c 410 4.20e04 0.0% |0.00=00 0. 00e0n
o= 4 dslash_fh2.e: 353 4.80e04 0.0% |0.00:00 0.00200
o= dslash_fnZ.c: 303 l.60e04 0.0% |0,00=00 0. 00=00
dslash_fn2.c 333 1.86e05 0.1% |0.00e00 0. 00e0n =
dslash_fn2.c 336 1.72e05 0.1% |0.00200 0. 00200
o= 4 dslash_fn2.c 344 1.80804 0.0% |0.00e00 0.00e00
dslash_fn2.co 432 5.85e04 0.1% |0.00e00 0. 00200
dslash_fn2.c 437 §.10e04 0.0% |0.00=00 0.00200
@4k d_congrada_fnc: 210 1.16e08 0.7% |0.01=00 0. 00e00
¢4 dslash_fn_field_special 9,42e05 0.5% |0.01e00 . 00e0n
¢ dslash_fnZ.c 363 7.05e04 0.0% |0.00:200 0.00200
o= 4k wrait_gather 2.10e04 0.0% |0.00=00 0.00e00
¢ 4 dslash_fn2.c: 413 7.80e04 0.0% |0.00:00 0, 00e00
o 4 wait_gather 3.45:04 0.0% | 0.00=00 0.00e00
o= 4 dslash_fnZ.c: 305 5.70e04 0.0% |0.00e00 0. 00=00
o= dslash_fnZ.c: 362 7.35e04 0.0% |0.00e00 0.00e00
o @ dslash_fhZ.c 410 4.65e04 0.0% |0.00=00 0.00200
=4 dslash_fnZ.c: 353 5.10e04 0.0% |0.00=00 0, 00=00 |
o= 4+ dslash_fmZ.c: 303 Z.25e04 0.0% |0.00e00 0. 0000
dslash_fn2.c; 333 1.72e05 0.1% |0.00:00 0.00200
dslash_fnZ.c: 336 l.68e05 0.1% |0.00e00 0, 00=00
o & dslash_fnZe: 344 3, 45004 0.0% | 0.00e00 0. Doenn
dslash_fn2.c: 432 7.35e04 0.0% |0.00=00 0.00200
dslash_fn2.c: 437 9.45e04 0.1% |0.00=00 0. 00=00 =
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Figure 11.26: Screenshot of weak scaling analysis resulgif3rmd using relative excess

work on 1 and 16 processors, for the routke.congr ad.
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We also determined that the the lack of a non-blocking impletation ofar nci _noti fy
in the ARMCI communication library caused a scalabilitytieteck in NAS SP.

This study showed that the results obtained by the autorsa#itng analysis method
are consistent with those obtained by the semi-automatilsedaising the communication
primitives scalability plots and the bottom-up view. Thigams that even though one may
use many metrics to quantify scalability, the ones we @disufficed for both strong and
weak scaling analyses.

We explored an extension of the CAF model with collectiverapiens, and evaluated
their impact; using the language-level collective led teduction of 60% on 64 CPUs of
the initialization time for the NAS MG benchmark and to gani®25% in execution time
on 64 CPUs for the LBMHD kernel. The language extensionseseribed in Appendix B.

We demonstrated the utility of our technique for pinpoigtstalability bottlenecks no
matter what their underlying cause. Our scaling analysigateworks regardless of the
SPMD parallel programming model, of the underlying comngation fabric and proces-
sor type, of the application characteristics, and of thdirsgaharacteristics (e.g. weak
scaling vs strong scaling). When used in conjunction wittiggenance analysis based on
expectations, our performance tools are able to attribzda&ability bottlenecks to calling
contexts, which enables them to be precisely diagnosed.

In the future, we intend to explore using performance amalyased on expectations
for analyzing codes written using other parallel prograngninodelse.g. OpenMP and
MPI-2. We plan to use our method to perform a thorough scatngy of petascale NSF
procurement benchmarks. Finally, we plan to incorporappstt for performance analysis
using expectations into the distributed version of Ricevdrsity’s HPCToolkit perfor-

mance analysis tools.



204

Chapter 12

Conclusions

We are fast approaching the point when petascale machididsenavailable to scientists
and engineers. Exploiting these machines effectively bella challenge. To rise to this
challenge, we need programming models and tools that inegtevelopment time produc-
tivity and enable us to harness the power of massively ghigistems. Because program-
mers rarely achieve the expected performance or scalimg thheir codes, they need tools
that can automatically pinpoint scaling impediments tectiand prioritize their optimiza-
tion efforts, and thereby improve development time produgt

In the quest for easy to use, performance portable, and €ipeeparallel program-
ming models, Co-array Fortran represents a pragmaticnaliee to established models
such as MPI, OpenMP and HPF. While MPI, a library-based ngespassing program-
ming model, is thede factotechnology used for writing parallel codes, it is difficuit t
use. HPF and OpenMP are language-based programming mitdsisely exclusively on
compilers to achieve high-performance, and are not ablelteedt performance on a broad
range of codes and architectures. CAF offers a one-sidegtgaroning model, where only
one process needs to spedfyYT or GET communication, without interrupting the other
process; CAF is easier to use than MPI, especially for ifeggapplications. In contrast
to HPF and OpenMP, a CAF programmer has more control overrthegerformance and
only modest compiler technology is needed to achieve hggffepmance and scalability.

The thesis of our work is th&o-array Fortran codes can deliver high performance and
scalability comparable to that of hand-tuned MPI codes asra broad range of architec-
tures. When CAF codes or other SPMD programs do not achievddhired performance

and scalability, we can automatically diagnose impediraéntheir scalability



205

To demonstrate this thesis, we implemented c, a prototype multi-platform source-
to-source CAF compiler. We demonstrated through expetisnem several platforms that
CAF versions of such regular codes as the NAS benchmarksTSRM8 LU, of irregular
codes such as NAS CG, and of the magnetohydrodynamics col#HCBcan yield per-
formance comparable to or better than that of their MPI cengoatrts on both cluster-based
and hardware shared memory platforms.

This dissertation presents key implementation decisieganding the implementation
of a multiplatform CAF compiler, and describes automatid aource level optimizations
for achieving local and communication performance on elssand distributed shared
memory systems.

To achieveefficient node performancehe caf c-generated code must be amenable
to backend compiler analysis and optimization. To avoiddéealty of overly conserva-
tive assumptions about aliasingaf ¢ implements an automatic transformation that we
call procedure splittingthat conveys to a backend compiler the lack of aliasingarcay
shape and bounds, and the contiguity of co-array data. Tiables a backend compiler
to perform more accurate dependence analysis and applytamp@ptimizations such as
software pipelining, software prefetching and tiling. @xperiments showed that proce-
dure splitting yielded benefits as high as 60% on Itanium2Aipta architectures.

To achieve scalableommunication performance/e used source-level transformations
such azommunication vectorizatioAn advantage of CAF is that it can express vectoriza-
tion at source level without calls to bulk library primits’eCommunication vectorization
yielded benefits as high as 30% on Myrinet cluster architesti/Vhen writing CAF com-
munication, the Fortran 95 array sections enable a progertorexpress communication
of strided data that is noncontiguous. We showed that eveanwising communication
libraries that support efficient non-contiguous stridechomunication, it is beneficial to
performcommunication packingf strided data at source level, sending it as contiguous
message, and unpacking it at its destination. We also shthaedne-sided communication

aggregation using active messages is less efficient theamjibptimized strided communi-
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cation transfers, because libraries such as ARMCI can apg@dcking of communication
chunks at the source, communication of strided chunks apdaking of chunks on the
destination. Communication packing at source level babp@formance abow0% for
both CAF and UPC on clusters, but yielded minuscule benefitshared memory plat-
forms. To give a CAF programmer the ability to overlap conapion and communication,
we extended CAF witmon-blocking communication regionSkilled CAF programmers
can use pragmas to specify the beginning and the end of egiorhich all communi-
cation events are issued by using non-blocking commumoicairimitives, assuming the
underlying communication library provides them. Usingstheegions enabled us to im-
prove the performance of NAS BT by up to 7% on an Itanium+Mgt2000 cluster.

To further improve parallel performance of CAF or other SPN@les, we need to
determine the impediments to scalability. To understand bealing bottlenecks arise,
we need to analyze them within the calling context in whiceytloccur. This enables
program analysis at multiple levels of abstraction: we dafloose to analyze the cost of
user-level routines, user-level communication abstasti compiler runtime primitives, or
underlying communication library.

Users have certaiperformance expectatiorts their codes. For strong scaling paral-
lel applications users expect that their execution timeekses linearly with the number
of processors. For weak scaling applications, they expgetthe execution time stays
constant while the number of processors increases and théepr size per processor re-
mains constant. Our goal was to develop an efficient teclgydlmatquantifieshow much
a certain code deviates from the performance expectatibtieaisers, and then quickly
guidesthem to the scaling bottlenecks. We developed an intuitig&imfor analyzing the
scalability of application performance based on exceskww/e used this scaling anal-
ysis methodology to analyze the parallel performance of MJAF, and UPC codes. A
major advantage of our scalability analysis method is thist éffective regardless of the
SPMD programming model, underlying communication librgrocessor type, applica-

tion characteristics, or partitioning model. We plan toorporate our scaling analysis into
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HPCToolkit, so it would be available on a wide range of platis.

Our scaling study pointed to several types of problems. Gaéopnance issue we
identified using our scalability analysis was the inefficief user-level implementation
of reductions in both CAF and UPC codes. A drawback of soleeel user-implemented
reductions is that they introduce performance portabpityblems. The appropriate so-
lution is to use language-level or library implementatiohseductions, that can be tuned
offline to use the most efficient algorithms for a particul@atform. An obstacle to scalabil-
ity for CAF codes was a blocking implementation of g¥nc_not i f y synchronization
primitive. Finally, for both CAF and MPI applications we fod that some codes performed
successive reductions on scalars; the natural remedydbristio perform aggregation of
reductions by using the appropriate vector operations. mMportant result was that the
relative excess work metric readily identified these scbigibottlenecks.

The scaling analysis of CAF codes indicated the urgency mjuage-level support
for collective operations. Consequently, we explored araduated collective operations
extensions to the CAF model and presented an implementstiiategy based on the MPI
collectives. For the NAS MG benchmark, using the languaget!lcollectives led to a
reduction of the initialization time by 60% on 64 processarsd led to a reduction of the
measured running time for LBMHD of 25% on 64 processors.

Unsurprisingly, our scaling analysis identified exposeggwinication latency as a ma-
jor scalability impediment. In companion work, Dotsenk@][proposed several strategies
for latency hiding: CAF language extensions for computashipping and multiversion
variables for producer-consumer patterns. However, éartbmpiler analysis and runtime
improvements are necessary to tune the granularity of camgation to target architec-
tures. We need to improve the usability of our calling contese viewer by making it
easier for users to identify trouble spots when analyzingelapplications, for example by
computing and displaying summary information for the So#ily metrics. Our scalability
analysis methodology supports SPMD programs; we need émebt to analyze parallel

programs that utilize dynamic activities.
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Appendix A

Scaling Analysis of Parallel Program Performance

In Chapter 11 we described an automatic scaling analysisadethe software infrastruc-
ture used to implement it, and presented scaling analysigtsewvhich gave us insight into
scaling problems for several applications. In this chapterpresent applications of our
scaling method for other MPI and CAF codes, spanning see¢fdAS benchmarks. For

all the benchmarks analyzed we focused on small problers,sitgch tends to expose lack
of scalability due to communication and synchronizaticefficiencies on a small number

of processors. For historical reasons, we used the avexagsswork scaling metric.

A.1 Analysis of the NAS MG Benchmark

The MG multigrid kernel calculates an approximate solutmthe discrete Poisson prob-
lem using four iterations of the V-cycle multigrid algonithon an x n x n grid with pe-
riodic boundary conditions [24]. The MPI version of MG is dabed in Section 3.2.1.
In Figure A.1 we present the scalability of the MPI versiol\N&S MG. The MPI prim-
itives that display increased cost with increasing numbgsrocessors ar®Pl _Send,
MPI \Wai t andMPI _I ni t ; the overall loss of efficiency is 75%. The profiling overhead
was of 7-16% for the MPI NAS MG version.

In Figures A.2 we present a screenshot of the scaling aisalgsults for the MPI ver-
sion of NAS MG. Overall, the average loss of scaling for thémnautine is34%. The MPI
initialization routine accounts fd#%; the routine performing the multigrid computation,
ng3p, accounts for7%; the MPI finalization routine leads to a scaling loss36§. The
routiner esi d costs5%, and the routingr an3 incurs a4% loss of scalability. We dis-

play the results fong3p in Figure A.3; the call ta esi d accounts foB%, out of which
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Figure A.1: Scalability of relative costs for communicatiprimitives and computation
for the MPI version of the NAS MG benchmark class A (st563).

the routinecomm®B costs2%; this cost is due to two calls i ve3, each costing%. The
main constributor to the scaling loss @f ve3 is the MPI routinenpi _send. A call to

psi nv accounts for anothe@% loss of scaling, mostly due to tleomB routine as well.

A.2 Analysis of the NAS SP Benchmark

NAS SP is a simulated CFD application that solves systemsgjoateons resulting from
an approximately factored implicit finite difference disteation of three-dimensional
Navier-Stokes equations [24]. SP solves scalar pentasdagystems resulting from full
diagonalization of the approximately factored scheme.[Z&E MPI version of SP was de-
scribed in Section 3.2.1. In Figure A.4 we present the sd#labf relative costs for com-
munication primitives and computation for the MPI versidiN&S SP. The graph shows
that the loss of efficiency is of 46% on 64 CPUs, and that thesanfdvPl Wai t al | in-
crease significantly with an increasing number of processbhe profiling overhead was
of 2-8%.

In Figure A.5 we present the scaling analysis results forMif version of NAS SP,



fusersicecristifResearchfcc-caf-experiments/binfmg-mpi-f.A. 64

Scopes | k2 # samples JAEW T EAEW %Hl
ma_mpi 1.89e05 100.0 |0.34e00 0.00e00 -
¢ @ gt 85 3.00e04 15.9% | 0.09e00 0.00200
o 4 mipi_init_ 3.00e04 15.9% | 0.0900 0. 00200
¢ @ ot 244 4.35804 23.0% | 0.05800 0. 00800
o 4 mgzp 4.35e04 23.0% | 0.05800 0. 00e00
¢ @ ot 324 9.00803  4.8% | 0.03800 0. 00800
o= 4r mpi_finalize_ Q.00e03  4,8% | 0.03e00 0, 00e00
¢ @ mof 245 1.20804 6.3% | 0.0Ze00 0. 00800
o 4 resid 1.20e04 6.3% | 0.02e00 -0.00e00
% @ ot 231 1.35e04  7.1% | 0.02e00 0. 00800
o 4 zranz 1.35e04 7.1% | 0.02e00 0. 00800
¢ @ mof 197 1.35e04  7.1% | 0.0Ze00 0.00800
o 4 zranz 1.35e04  7.1% | 0.02e00 -0.00e00
¢ @ ot 219 7.50003 4.0% | 0.0Ze00 0. 00800
o 4 resid 7.50003 4.0% | 0.02e00 0. 00800
¢ @ maf 227 1.20e0d4 6.3% | 0.0Ze00 0. 00800
o 4 mgzp 1.20e04 6.3% | 0.02e00 0. 0000
% @ ot 228 3.00003 1.6% | 0.01e00 0. 00800
& 4 resid 3.00e03 1.6% | 0.01e00 0. 00200
g f 2434 1.50803 0.8% | 0.01e00 0.01800
o 4 mg.f 238 3.00e03 1.6% | 000800 0. 00200
mg.f 996 1.50e03 0.8% | 0.00800 0, 00800
o 4 mgf 133 1.50003 0.8% | 0.00e00 0. 00800
o @ g f 99 3.75004 19.8% | 000800 0. 00800 |
q JK i ’

Figure A.2: Screenshot of strong scaling analysis resalt8Pl NAS MG class A (size

256%), using average excess work on 1, 2, 4, 8, 16, 32, and 64 morses

class A. The total scaling loss 28 %, out of which the alternate direction integration rou-
tine, adi , accounts forl9%; an initialization routineset up_npi accounts for the re-
maining 2%. Within adi , a call tocopy_f aces leads to al2% loss of scaling, the
sweeps along the x, y, and z-dimensions account eac?’fdoss, and thedd routine
incurs al% scaling loss. We display a screenshot of the scaling arsatgsults for the
routinecopy _f aces in Figure A.6. We notice that the culpritis a calltpi _wai t , with
anIAEW of 11%; by inspecting the source code we determine trgt_wai t is called

to complete the communication with six neighbors performmedopy _f aces.



usersiccristifResearchicc-caf-experiments/bin/mg-mpi-f.A.64

F985 -
ﬂ 4499 subroutine mgaPiusracnl n2, n3 k) =
500 =
I T e e T e P e 3.8
Scopes # samples TAEW T EAEW Eﬂl
mazp 4.35e0d 23.0% | 0.05e00 -0, Q0edd A
o4 mg.f; 557 1.20e04 6.3% |0.03e00 0, 00e00
§-4 resid 1.20e04 6.3% | 0.03e00 0. 0000
¢ mg.f GEE& G.00e03  3.2% | 0.0Z2e00 0. 00e0
¢4 comm3 B.00e03  3.2% | 0.0Z2en0 0. Q0edd
¢4 mg.f 1071 4.50e03  2.4% | 0.01e00 0, 00e00
¢4k givel 450803 2 4% | 0.01e00 0, Q0e0d
¢4k mg.f 1247 F.00e03  1.6% | 0.01e00 0. 00e0D
o= 4 mpi_send_ 3.00e03 1.6% | 0.01e00 0. 00edd
o= 4 mg.f: 1278 1.50e03 0.8% | 0.00e00 0, 00e00
¢4 magf 1072 1.50e03 0.8% | 0.01led0 0. 00e0d =
o= 4 gives 1.50e03 0.8% | 0.01e00 0. 00e0
ma.f 662 1.50e03  0.8% | O 00e00 0. 00edd
mg.f; 662 1.50e03 0.8% | 0.00200 0, 00e00
mg.f 669 1.50e03 0.8% | 0.00e00 0. 00e0d
mg.f, G&9 1.50803 0.8% | Q.00g00 0. 00e0d
94 ma.f 558 1.20e0d4 6.3% | O0.0Zeb0 0. 00e0d
@ psiny 1.20e04 6.3% | 0.02e00 =0, Q0e0d
[ mag.f 618 A 00e03  3.2% | 000200 0. 00e0d
-4 commz 5.00e03  3.2% [0.02e00 00000
¢ mg. o 1071 3.00e03 1.6% | 0.01e00 0. 00e00
o= 4k gived 3.00e03 1.6% | 0.01ed0 0, 0000
4 mg.r 1074 1.50e03 0.8% | 0.01e00 0. 00e0n
o= 4k takes 1.50e03 0.8% |0.01ledd 0. 0000
o= 4 mg.f 1072 1.50e03 0.8% | 0. 00800 0. 00200
ma.f: 554 1.50e03 0.8% |0.00e00 0. 0000 -
4| [r] 4] Il | [v]

Figure A.3: Screenshot of strong scaling analysis for MPI bM&s A (size56°), using
average excess workon 1, 2, 4, 8, 16, 32, and 64 processotisefoutineng 3p.

A.3 Analysis of the NAS CG Benchmark

The CG benchmark uses a conjugate gradient method to corapud@proximation to
the smallest eigenvalue of a large, sparse, symmetricigmsiefinite matrix [24]. This
kernel is typical of unstructured grid computations in thdests irregular long distance
communication and employs sparse matrix vector multipbeca The MPI version of NAS
CG was described in Section 3.2.1, and the CAF version in@e6t2. In Figure A.7 we
present the scalability of relative costs for communigapoimitives and communication

for the MPI version of NAS CG; the results show that the lossfiéiency on 64 processors
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Figure A.4: Scalability of relative costs for communicatiprimitives and computation
for the MPI version of the NAS SP benchmark class A ($i£8.

is of 73%, andvPl Wi t is the most nonscalable communication primitive. In Fighr@
we present the same results for the CAF version of NAS CG,; tkeadl loss of efficiency
is of 76% and the routines which exhibit nonscalable costsaanti _noti f y_wai t
andARMCI _Put . In Figure A.9 we present a summary of the user-defined nsdicthe
volume of communication and synchronization. The profilovgrhead was of 2-8% for
the MPI version and of 4-13% for the CAF versions.

The relative cost of communication primitives graphs shioat the CAF version spends
more time insync_wai t as the number of CPUs increases. However, by comparing the
CAF and MPI communication primitives and computation Soiily graphs, we deter-
mined that in this case, it is a characteristic of the alganitather then an inefficiency in
the translation to CAF ocaf ¢ run-time library implementation. Notice that both CAF
versions display a similar anomaly when going from 8 to 16 €PWhe relative cost of
computation is higher for 16 processors than for 8 processmalysis of the compiler op-
timization report showed that the backend compiler perfotine same optimizations. The
relative cost difference is due to increased number of cathsges for the 16 CPUs version,

due to increased conflict misses.
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v dusersiceristiMMesearchi/cc-caf-experiments/binfsp-mpi-f.A |Z|@||E
File
sp.f |
-
scopes | @& (& # samples LAEW T EAEW ;’I
mpsp 294806 100.0 | 0.00800
-4 sp o163 2.80006 97.2% | 0.19e00 0, 00e00
¢4 adi 2.86e06 07.2% | 0. 10800 0., 00ed0
¢4 adif 12 1.17e06 39.9% 0.12_&00 0. 00e0d
o 4 copy_faces 1.17e06 39.9% | 0.12e00 0.02e00
4k adif 20 5.40e05 18.4% | 0.0Ze00 0. 00200 L
ok x_solve 5.40e05 18.4% | 0.02e00 -0.01e00 b
¢4 adif 26 5.12e05 17.4% | 002000 0. 00e0D
o 4+ z_zolve 5.12e05 17.4% | 0.02e00 0, 00e00
¢4 adif 24 4.38e05 14.9% |G.02e00 0, 00e00
ok salwe 4,38e05 14.9% |0.02e00 -0.01ed0
9 4 adif 28 1.31805 4.4% | 0.01e00 0.00e00 |
o 4+ add 1.31e05 4.4% | 0.01e00 0.01e0d
o= 4 adif 1e A.45e04  2.2% | -0.00e00 0. 00200
¢ & spf 57 3.15e04 1.1% |002ed0 0. 00e00
o= {F setup_mpi 3:15e04 1.1% | 0.02ed0 0. 00e00 £l
o= spf 102 G.00e03  0.2% | 0.00e00 0. 00e00 el
1 kil Il 4

Figure A.5: Screenshot of strong scaling analysis resalt$fPl NAS SP class A (size
643), using average excess work on 4, 9, 16, 25, 36, 49, and 64 CPUs
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2 dusersfceristifResearchfcec-caf-experiments/binfsp-mpi-f.A
File

copy_faces.f
178 call mpi_irecw(in_butfer(srid)), b_size(d), =
179 > dp_type, successor(l), WEST,
180 > camm_rhs, reguests{dl, errar)
181
182
ﬂ 182 call mpi_isendiout_bufferiss{1), b_sizeil),
154 > dp_type, predecessoril), WEST,
185 > comm_rhs, requests(7, arror)
186
187
1588
185 call mpi_irecwin_buffer{sr{l)), b_size(l),
150 > dp_type, predecessar(l), EAST,
151 > comm_rhs, requests{1y, error)
152 call mpi_irecwlin_buffer{=r{2)), h_size(2),
143 > dp_type, successord2), SOUTH,
194 = comim_rhs, requaests{2), error)
155 call mpi_irecw(in_buffer(sriz)), b_size(3},
196 > dp_type, predecessar{z), NORTH,
187 > carmm_rhs, recquests{3), error)
198 call mpi_irecwin_buffer(sri4)), b_size(4),
1549 > dp_type, successari3), BOTTOM,
200 > comm_rhs, requestsi4), error)
201 call mpi_irecyin_buffer(sris)), b_size(s}, B
202 > dp_type, predecessor(3), TOF,
203 = commm_rhs, requests(s), error)
204 =
205 call mpi_isendiout_buffer(ssiin, b_size(d),
206 > dp_type, successor(l), EAST,
207 > camm_rhs, requests(&), errar) -
208
209
210
211
212
2132 call mpi_isendiout_bufferissi2, b_sizei2),
214 > dp_type, successor(dy, MORTH,
215 > comm_rhs, requests(g), error)
216 call mpi_isendiout_buffer(ssi(21, b_size(3),
217 > dp_type, predecessor(Z), SOUTH,
218 > comm_rhs, requests{=, error)
214 call mpi_isendiout_buffer{ssi4d, b_size(4),
220 > dp_type,successor(2y, TOP,
221 > comm_rhs, regquests{10), arrar)
222 call mpi_isendiout_buffer{ss{5n, b_sizes),
223 > dp_type,predecessar(3), BOTTOM,
224 > comm_rhs,requests{11ly, errar)
225
226
ﬂ ST call mpi_waitallfl2, requests, statuses, error |
Scopes # samples IAEW T EAEW jl
Copy_faces 1.17e05 39.9% |0 12e00 0.03e00 -
9 4 [Copy.faces . 227 5.18005 17.6% | 0. 11800 0.00800 =
o= {r mpi_waitall_ 5.18e05 17.6% | 0.11e00 -0, 00200 =
1 ] 4 Il [ ¥

Figure A.6: Screenshot of strong scaling analysis resalt$Pl NAS SP class A (size
64%), using average excess work on 4, 9, 16, 25, 36, 49, and 64 (BtUthe routine

copy _f aces.
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Figure A.8: Scalability of relative costs for communicatiprimitives and computation
for the CAF version of the NAS CG benchmark class A (size 14000



CPUs| PUTs PUT vol | GETs | GET vol | notifies | waits | barriers
1 0 0 3 16 0 0 15
2 1680| 46598912 5 40| 3360| 3360 15
4 1680| 46598912 9 72 3360 | 3360 15
8 2944 | 34957824 17 264 | 5888| 5888 15
16 2944 | 34957824 33 520 | 5888| 5888 15
32 4208 | 23316736 65 2056 | 8416| 8416 15
64 4208 | 233167367 129 4104 | 8416 | 8416 15

2

34

Figure A.9: Communication and synchronization volume far CAF version of NAS

CG, class A (siza4000).

2% Jusersfceristifesearchicc-caf-experiments/binfcg-mpi-ft.A

L B T =

(7] 48 prograrm cg =

D I -

Scopes Lgl '%! # samples LAEW EAEW fl

2.81005 100.0 | 061600 0., 0000 -
¢4 cg a0 4325 2.14e05 73.7% [G.43200 0, 0000
o4 canj_grad 2.14e05 73.74% | 0.43e00 0. 0d el
G4 co.f90; 205 3.00e04 10, 3% | 0.07e00 0.00e00
o= 4 initialize_mpi 3.00e04 10.3% | 0.07e00 0L 00e0)
g 4 cofo0: 233 2.25e04  7.7% | 0.05800 0. 00800
o 4 conj_grad 2.25e04 7.74 |0.05200 0. 00e00
¢ @ cgfo0 294 1.80e04 £.2% |0.04e00 0. 00e00
o 4+ makea 1.80e04 6.2% | 0.04200 0, 02e00
¢ @ co.f90; 598 f.00e03  2.1% [0.02e00 0, D0 e0d

e 4 mpi_finalize_ 6.00e03  2.1% [0.02e00 0, Qe Py

4] (vl ] i [#]

Figure A.10: Screenshot of strong scaling analysis resalts1Pl NAS CG class A (size
14000), using average excess work on 1, 2, 4, 8, 16, 32, and 64 CPUs.
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fusersfceristifResearchice-caf-experiments/binfcg-mpi-ft. A

File
cg.fa0 i
1235 | Olnain d with a sum-reduce £zl
1236 lomm e
12327 doi=1 Znpcals
1238 call timer_start{T _comrm)
12359 call mpi_irecwi d, &
1240 1, &
1241 dp_tvioe, &
1242 reduce_exch_procil, &
1243 i, &
1244 mpi_comm_world, &
1245 regquest, &
1246 ierr )
1247 call mpi_send( sum, &
1248 1, &
1245 dp_type, & =
1250 reduce_exch_proc(), & H
1251 i, &
1252 mpi_cormm_world, &
1252 jerr)
1254
O 125 call mpi_waitt request, status, ierr)
1256 call timer_stop(T _camm)
1257 -
scopes @& R # samples TAEW T EAEW ﬁ“
conj_grac 2.14e05 73,74 | 0.43e00 0.04e00 A
¢ 4 fgire0: 1255] 540804 18.6% |0, 0. 00R0D
O T _weait 5.40e0d4 15.6% | 0, 14800 0. Q0en
@4 cg. a0 1180 600004 20.6% | 0.11e00 0, 0000
o= i _wait_ G.00e04 20.6% | D.11e00 0. 00end
o 4 cg.fag: 1202 2.10e04  7.2% [0.04e00 0. 00ed0
£g foo 1118 6.00803  2.1% | 0.03e00 0, 03e00
cofan 1118 1.50e03 0,5% |0.03800 0, 0300 x
cg.fan: 1118 2.00e03  1.0% | 0.03e00 0.03e00
cg.fao: 1118 1.50e03 0.5% | 003800 0.03e00
cg.fan; 1118 1.50e03 0.5% | 0.03e00 0.03e00
cg.fan: 1118 1.50803 ©.5% [0,03e00 0, 0300
cg.fan: 1118 9,00e03  3,1% |0,03200 0. 03e0d
£g.fan: 1118 4.50e03 1.5% [0.03e00 0.03e00
o= g a0 1311 000803 3.1% | 0.0200 0. Q0e =
cgfan: 1116 3.00e03  1.0% | 0L01e00 0.01e0d
o= 4 cg.fag; 1271 3.00e03  1.0% |0.01e00 000800
cg.fan: 1343 1.50803 0.5% | 0.01e00 0.01e00
o g fan: 1181 1.50e03 0.5% | 0.01e00 0. 00800
o @ cg.fan: 1087 1.50e03 (.5% | 0,01e00 0, 00800
o= £g.f90; 1439 1.50803 0.5% |0.00e00 0, Qoec P
A] 3 KN I I [¥]

Figure A.11: Screenshot of strong scaling analysis resalts1Pl NAS CG class A (size
14000), using average excess work on 1, 2, 4, 8, 16, 32, and 64 CRU#hd routine

conj _gr ad.
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OF Jusersjccristi/Research/caf-experiments/binjcgcaf.A.64 s
File
co.cafctmpaw 26
& 2188 PROGRAM cq
2167 use w2f__types
écopes # samples "—:
AL | =
g 4.68e05 100.0 L B4e00 Q. Qe -
@ 4 cg.cafctmp.w2if 2275 3.096005 84.6% | 0.72e00 0. 00e00
@ 4 cg_pshody 3.0A205 84.6% | 0.7Z200 0. 00l
@ 4 cg.cafctmp w2 f 681 3.42e05 73.1% | O.63e00 0. Qe
@ & conj_grad_psbody 3.42e05 73.1% | 0.63e00 0. 1900
@ @ cg.cafctmp weff 630 2.40204 5.1% | 0.04800 0. 00ed0
@ & conj_grad_pshody 2.40804  5,1% | 0.04200 0. 01e00
9 4 cg.cafctmp w2l &8 1.80e04  3.8% | 0.03e00 0. 0000
& 4 makea 1.80e04  3.8% | 0.03e00 0. 01eqd
S 4 cg.cafctmpow2f f 602 6.00003 1.3% | ©.00e00 0. 00ed
@ 4 cg.cafctmpowa {1 701 300803 0.6% | 0.00800 0. 00800
B G cgocafctmpow2ff 725 1.50203 0.3% | 0.00200 0. Qe
S 4 cg.cafctmpow2f f 754 1.50e03 0.3% | 0.00e00 0. 00edn
@ 4 cgocafctmp w2t 2264 6.15e04 13.1% | 0.10e00 0. 00edn
@ < cafinit_ G6.15e04 13,1% | 0.10e00 0, 00e00
D 4 cg.cafctmp w2 f 2275 6.00e03 1,3% | 0.01e00 0. 00
@ 4 caffinalize_ 6.00e03  1,3% L 108 0, 00
D 4 cg.cafctmp w2 f 2264 4. 50e03  1.0% £ : 0. 0000
@ & cafglobalstartupinit_ 4.50803 1.0% | 0.01a00 0. 00 =
4 [ow] 4

Figure A.12:

14000), using average excess work on 1, 2, 4, 8, 16, 32, and 64 CPUs.

Screenshot of strong scaling analysis regatt<CAF CG

class A (size
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Ok [usersjceristifResearch/cal-experiments/binjcgcal.A.64 A x
File
cg.cafctimp.w2rrf
(i} 1250 SUBROUTIME conj_grad_psBoch{COLIDH, ROWSTR, X, 2, 4 P, il
1251 > Q_CAF_LocPtr, O_CAF_Handle, E_LocPir, E_Handle, W_LocP1r, -
Scopes # samples
- conj_grad_psbody 3.42e05 73.1% | O.63e00 0. 19e00
D @ cg.cafctmp.w2ff 1585 8.55e04 18.3% | O.iie0n 0., 00800
@ 4 cafputstrided. §.55804 18.3% | ©.11e00 0., 00800
@ 4 Communicationinterface cc; 201 8.55e04 18,3% | 0.11e00 0, 000
@ 4 ARMCICommunicationinterface:: cafPutStrided(void®, long long| &.40e04 17.9% | O.04e00 0, O0ell
9 4 ARMCICommunicationinterface.cc: 523 S.40e04 17.9% | O.11e00 0. 000
B ARMCI_Put 8.40e804 17.9% | 011800 0, 0000
©= f ARMCICammunicationinterface: cafPutStridedivaic™, long lond) 1,50e03 0,3% | O.04e00 0. 00800
Cg.cafctmp.w2i.f 1567 510804 10.9% | 0.10e00 0. 10800
D f cg.cafctmp w2 1633 5.25e04 11.2% | 0.089e00 0. 00e0
& 4 cafruntime_mp_cafsynchwaits calar_ 5.25e04 11.2% | 0.09e00 0, 00
@ & cgoeafcimpow2if 1576 2.259e04  4,8% | 0.04e00 0. 00200
@ ¢ cafruntime_mp_cafsynchwaitscalar_ 2.25e04  4.8% | 004800 0 0000
cg.cafctmpow2f.f 1566 1.50e04 3.2% | G.04800 0. 04e00
P 4 cg.cafctmp w2f f 1639 2.10e04  4.5% | 0.03e00 0. 0000
@ cafruntime_mmp_cafsynchnotifyscalar. 2.10e04  4.5% | 0.03e00 0. 00edd
D 4 cg.cafctmp.w2ff 1574 7.50e03 1.6% | 0.03e00 . 0000
O 4 cafruntime_mp_cafsynchnotifyscalar. 7 90003 1.6% | 0.03e00 0., 00800
cg.cafctmpw2f.f 2073 7.90e03  1.8% | 0.02e00 0. 02800
D 4 cg.cafctmp w2 1631 1.35e04 2.0% | 0.0Ze00 0.00e00
@ ¢ cafruntime_mp_cafsynchnotifyscalar_ 1.35e04 2.89% | O.0Ze00 0 0000
9 4 cg.cafctmp w2f.f: 1589 G.00e03  1,3% | 0.0Zelo 0. 000
@= i cafruntime_mp_cafsynchwaitscalar. 6.00803 1.3% | 0.02e00 0. 00ed0
D 4 cg.cafctmp w2 f 1661 0.00e03 1.9¥ | 0.02e00 0 00en0
@ g cafruntime_mp_cafsynchnotifyscalar. 9.00e03  1.9% | 0.02e00 0. 00800
@ 4 co.cafctmp.w2f.f 1670 1.05e04 2.2% | 0.01e00 0. 00e00
@ 4 cafruntime_mp_cafsynchnotifyscalar_ 1.05804 2.2% | 0.01200 0. 0Qeq0
@ & cgoeafcimpow2ff 1587 9.00803  1.0% | 0.01e00 0.00e00
@ & cafruntime_mp_cafsynchnotifyscalar_ Q.00e03  1.9% | 0.01edi 0 0000
cg cafctmp.aw2f.f 1563 3.00e03 0.6% | 0.01e00 0.01e00
P4 cgoeafctmpow2ff 1704 5.00803 1.3% | 0.01e00 0, 0000
@+ cafputstricded_ 6.00803 1.3% | 0.01e00 0. 00800
@ 4 cg.cafctmp w2l f 1637 5.00e03 1.3% | 0.01e00 ., 00e00
O 4 cafputscalar 5.00003 1.3% | 9.01e00 0. 00e00
cg.cafctmp.w2f.f. 1647 4.50803 1.0% | 0.01e00 0,01a00
cg.cafctmpow2f f 15649 1.50e03 0.3% | 000200 0. 00800 -
P |?.uuu T R | » Pl |: I .l

Figure A.13: Screenshot of strong scaling analysis resatt<CAF CG class A (size
14000), using average excess work on 1, 2, 4, 8, 16, 32, and 64 CRU$hd routine
conj _gr ad_psbody.
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We present strong scaling analysis results for the MPI g@arsf NAS CG class A in
Figure A.10. The total scaling loss$%; conj _gr ad accounts fo50%, the MPI initial-
ization routine incurs @a% loss,makea leads to a% loss, and the MPI finalization routine
has anf AEW of 2%. By analyzing furtheconj _gr ad, as displayed in Figure A.11, we
notice that two large factors in scaling loss are two callsgo _wai t , with AEW scores
of 14% and11%, respectively. By using the source correlation featuredetermine that
npi _wai t is used to implement several sum reductions for a sparséexavaitrtor product.
This result is consistent with the results of relative casliag for selected communication
primitives presented in Figure A.7. Also, thed EW for conj _gr ad is 4%, which shows
that the local computation does not exhibit linear scalirigee.

In Figures A.12 and A.13 we present screenshots of stronghgcanalysis for the
CAF version of NAS CG class A using the ARMCI communicatidordiry. The results
in Figure A.12 show that AEW for the main routineg is 83.6%, out of which62.6%
is due toconj _gr ad_psbody, the main timed conjugate gradient routiné% is due to
cafinit,4.5% is due the call otonj _gr ad_psbody in the initialization phase3.4%
is due tomak ea, that generates the sparse matrix input detais due tocaf f i nal i ze.
Figure A.13 shows that fazonj _gr ad_psbody 19.1% of average excess work is actu-
ally due to exclusive costs, which means that the local cdatjaun is not scalable either.
ARMCI _Put is responsible fot1.1% excess work, calls tar nti _noti fy_wai t are re-
sponsible for1 5%, and calls to blockingr nti _not i fy are responsible for2% IAEW.
The calls toar nti _noti fy_wait correspond to waiting for permission to write on the

remote co-arrays, and are indicative of load imbalance éstvwmages.

A.4 Analysis of the NAS LU Benchmark

LU solves the 3D Navier-Stokes equation as do SP and BT. LUements the solution
by using a Successive Over-Relaxation (SSOR) algorithnelwvéiplits the operator of the
Navier-Stokes equation into a product of lower-triangwad upper-triangular matrices

(see [24] and [84])). The algorithm solves five coupled nuedir partial differential equa-
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tions, on a 3D logically structured grid, using an implicgégudo-time marching scheme.
The MPI and CAF versions of NAS LU are described in sectio@sl3and 6.4. In Fig-
ure A.14 we present the scalability of relative costs of camimation primitives and com-
putation for the MPI version of NAS LU. The overall loss of eifincy on 64 CPUs is
46%, and the most inefficient communication primitive®® _Recv. In Figure A.15 we
present the scalability of the CAF version of NAS LU. The alkloss of efficiency on
64 CPUs is 68%, witlar nci _not i f y_wai t most responsible for the loss of scaling. In
Figure A.16 we present a summary of the user-defined metni¢hé volume of communi-
cation and synchronization. The profiling overhead was d0% for the MPI version and
of 4-11% for the CAF versions.

For CAF NAS LU, as the number of CPUs increases the time spesiyinc_wai t
increases. Even though the communication and synchramizeblume point to an in-
creases number ¢fUTs, the number of synchronization events is not double thebeum
of PUTs. The bottom up view shows that the large time spesyinc _wai t is due to load
imbalance, waiting for the data to arrive, rather than toitledficiency of the handshake.
However, having non-blocking notifies might reduce the wiaie as well, because the
extra network latency exposed for the source processoPtfTabefore the notification is
sent is observed as well by the destination processor. THewessions using ARMCI and
GASNet as communication libraries display the same sdajabharacteristics.

In Figure A.17 we show a screenshot of strong scaling arehgsiults using average
excess work for the MPI version of NAS LU, class A. The overadhscalability score
is 19%, with the routinessor responsible for 8%, and the communication initialization
function,i ni t _.comm accounting forl %. Within ssor , r hs accounts fo6%, bl t s for
5%, andj acl d for 2%. By focusing more closely ossor , as shown in Figure A.18, we
determined that the main culprit for the loss of scalingsbr were calls to the commu-
nication routineexchange 3.

In Figures A.19 and A.20 we present screenshots with restidtisong scaling analysis

for the CAF version of NAS LU using average excess work on 4,8, 16, 32, and 64
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other comm
MPI_Barrier
B MPI_Wait
MPI_Sendrecv
B MPI_Irecv
B MPI_Recv
M MPI_Isend
MPI_Send
MPI_Finalize
B MPI_Init
I computation

Figure A.14: Scalability of relative costs for communicatiprimitives and computation
for the MPI version of the NAS LU benchmark class A (sizé).
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B ARMCI_Fence

| ARMCI_Barrier

B ARMCI_Wait

W ARMCI_NbGetS

W ARMCI_GetS
ARMCI_NbGet

B ARMCI_Get

B ARMCI_MbPuts
ARMCI_PutsS

B ARMCI_NbPut

m ARMCI_Put

W armci_notify_wait
armci_notify
ARMCI_Finalize

B ARMCI_Init

m computation

Figure A.15: Scalability of relative costs for communicatiprimitives and computation
for the CAF version of the NAS LU benchmark class A (s62é).

CPUs. Theresultsin Figure A.19 show that the the nonsdajedxore for the main routine

appl u is 34%; the score for the routinesor , which performs successive overrelaxation,

is 33%, and forcaf i ni t is 1%. Within ssor, the routinebut s, which computes the

regular-sparse block-upper triangular solution, hag AR’V of 20%, the routinebl t s
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CPUs| PUTs PUT vol | GETs | GET vol | notifies | waits | barrier
1 0 0 16 416 0 0 299

2 15756 | 121141440 232 | 16007 | 16004 299
4 31510 121141440 232 | 32012| 32008 299
8 31510 95773440 232 | 32012| 32008 299

16 31510| 60132480
32 31510| 44731200
64 63012| 61375968

232 | 32012 32008 299
232 | 32012| 32008 299
232 | 64018| 64018 299

© © © ©O© ©o O

Figure A.16: Communication and synchronization volumetha CAF version of NAS

LU, class A (size54?).

is responsible foir%, r hs for 3%, andj acl d for 3%. In Figure A.20 we analyze the
scalability of the routindut s; the results show that the major reason for nonscalabdity i
thear nti _noti f y_wai t primitive, used to determine if a data transfer to a localgma

completed. This result is consistent with the one deterchirsgng the first type of analysis.

A.5 Analysis of the NAS BT Benchmark

The NAS BT benchmark is a simulated CFD application that esa@ystems of equa-
tions resulting from an approximately factored implicitiféadifference discretization of
three-dimensional Navier-Stokes equations. BT solveskstodiagonal systems of 5x5
blocks [24] and uses skewed block distribution called rpatltiitioning [24, 148]. We dis-
cussed the MPI version of NAS BT in Section 3.2.1 and desdrihe CAF version in
Section 6.3.

In Figure A.21 we present the scalability of relative cogtsammmunication primitives
and computation for the MPI version of NAS BT. The overaldo$ efficiency on 64 CPUs
is 14%; thePl Wi t routine shows worst scaling In Figure A.22 we present thegixed

costs of communication primitives and computation for th=Grersion of NAS BT. On
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|
o 47 prograrm apply :l
AB  Ermmm e e B A T A RS R R B A T AR A AR =
scopes |2 R # samples JAEW T EAEW %M
appiy 2.10806 95.9% | 0. 19800 0, 00800 -
o uf 121 2.05e06 97.6% | 0.18800 0.00800
o4 ssor 2.05e06 97.6% | 0.18800 0.00800
¢ ssorf 191 5,58e05 26.5% | 0.06200 0.00e00
& 4 rhs 5.58e05 26.5% | 0.06200 0., 02800
¢ @ ssorf 128 £.16805 28.3% | 0.05200 0, 00800
& 4 hits 6.15605 29.2% | 0.04800 -0.02800
o 4 ssorf 123 3.10e05 14.8% | 0.02800 0.00800
o jacld 3.08e05 14.6% | 0.02800 0.02e00
o s50rT 66 300803 0.1% | 0.00200 0.00800
o= 4r szarf; 60 F.00e03  0.1% | 0.00800 0. 0000
ssarf 110 1.50e03  0.1% | 0.00800 0.00e00
o 4 ssorf 148 1.28605 6.1% | 0.00800 —0. 00800 1
& 4 ssorf 178 1.50803  0.1% |0.00800 0, 00800 T
o @ ssorf 143 4.08005 19.4% | 0.00800 0.00800
ssarf 164 1.50e03  0.1% | 0.00800 0.00800
ssorf 111 1.50e03  0.1% | -0,00800  ...|-0.00800
ssarf 111 300003 0.1% | -0.00e00  ...|-0,00e00
ssorf 111 1.50e03  0.1% | -0.00e00  ...|-0.00e00
ssarf 111 1.50e02  0.1% | -0,00e00  .,.|-0.00e00
ssorfo 113 300203 0,1% | -0, 00800 L. -0 0080
ssarf 165 1.50803  0.1% | -0.00800  ...|-0,00800
ssar.f 165 3.00e03  0.1% | -0.00e00  ...|-0.00e00
ssorf 165 4.50e03  0.2% | =0.00200 fen| =D 00800
ssonf 165 300003 0.1% | -0,00800 ... -0.00e00
R TR - 3.00e04  1.4% | 0.01200 0.00800 =
o4 init_comm 3.00e04  1.4% | 0.01800 0.00e00
o 4 luf: 155 7.50803  0.4% | 0.00800 0.00e00 I
o 72 4,50e03  0.2% | 0.00800 0.00200 ¥
4] [p] o] Il | [¢]

Figure A.17: Screenshot of strong scaling analysis regalt81Pl1 NAS LU class A (size
64?), using average excess work on 1, 2, 4, 8, 16, 32, and 64 CPUs.

64 CPUs, CAF BT loses 28%, witARMCl _Put andar nti _noti fy_wai t being the
least scalable communication primitives. In Figure A.23 present a summary of the
user-defined metrics for the volume of communication anasgenization. The profiling
overhead was of 5-6% for the MPI and the CAF versions.

By inspecting the scalability graphs, we notice that corapoh amounts for 75-80%
of the relative cost. Even though the numberRfTs increases also quadratically with
the number of processors, the CAF implementation tradea butfer for synchronization,

reducing the cost of a handshake. The high relative costrapatation on cluster platform
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Scopes # samples IAEW T EAEW 3"
Esor] 2.05e06 97.5% | 0. 1800 0.00200 “
[ szorf 18l 5.58e05 26.5% |0.06200 0. 00e00 : 8
¢4 rhs 5.58e05 26.5% | 006200 =0.02ae00 —
9 rhs:fi 214 2.37e05 11, 3% | 0.0d4e00 0. 00ed0
o4 exchange 3 2.37e05 11, 3% | g.0de00 0. 00ed0
¢4 rhsf 59 1.38e05 6£.68% |0.03e00 0, 00200
¢4 exchange 3 1.38e05 6.6% |0.03200 0. 00800
9 exchange_ 2.1 B& Q.15e04 4, 3% |0.01e00 0. 0000
o 4 mipi_wait_ O.15e04 4,3% | 0,01e00 0.00e00
g 4 exchange_2 f: 1349 4.20e04  2.0% | 0.01e00 0. 00e00
o4 mpi_send._ 4 20e04  2.0% [0.01e00 0. 00e00
exchange_32.f 89 1.50e03 0.1% | 0.00e00 0. 00ed0
exchange_3.f, 130 1.50e03 0.1% | 0.00800 0.00e00
exchange 3.1 135 1.50e03 0.1% | 0.00200 0,00e00
rhs.f: 242 1.50e03 0.1% |0.00e00 0. 00800
rhs.f. 242 1.50e03 0.1% |0.00e00 0, 00e00 ot
“ |4 I I¥] |

Figure A.18: Screenshot of strong scaling analysis refultthe MPI version of NAS LU
class A (size54%), using average excess work on 1, 2, 4, 8, 16, 32, and 64 CBUthe

subroutinessor .

explains why communication aggregation for BT didn’t yiétdsignificant improvement
on a shared memory platform such as SGI Altix 3000.

In Figures A.24 and A.25 we present screenshots of stronighgcanalysis results
using average excess work on 4, 9, 16, 25, 36, 49, and 64 CRidd.AIEWW score for the
main routine is5%, out of which theadi routine accounts fot%. Insideadi , x_sol ve
causes d% scaling lossy _sol ve leads to % loss, andz_sol ve causes a% loss. By
further analyzingk _sol ve, as shown in Figure A.25, we determine that a call hsx
has anE AEW cost 0f4%, which indicated that nonscaling node computation is aeatis
nonscalability for MPI NAS BT.

In Figures A.26 and A.27 we present screenshots with restitérong scaling anal-
ysis for the CAF version of NAS BT using average excess work 08, 16, 25, 36, 49,
and 64 CPUs. Figure A.26 shows that the scalability scor¢h@main routinarpbt is
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File
lu.cafctmp.an2f.f
625 PROGRAM apply =
Scopes ala &3 # samples - ARW | EAEW =
& applu 3.48e06 100.0 | 0.35800 0. 00e00 =
D 4 |u.cafctmp o w2ff 763 2.4000A 97.8% | 0.33000 0. 0000
@ & applu_pshody 3. 40006 97.8% | 0.33800 0. 00ad0
g & . cafctmpow2ff 578 3.38e0A 97.1% | 0.33e00 0. 0000
@ 4 ssor 3.38e06 97.1% | 0.33800 0. 00800
@ @ ssor.cafctmpw2f.f, 1252 3.38e06 97.1% | 0.33800 0. 00800
@ 4 ssor_pshody 3.38e06 97.1% | 0.33000 0., 00800
@ 4 ssorcafctmpow2ff 1047 | 1.50e06 43,08 | 0.20800 0., 00a00
@ 4 buts 1.49e06 42.0% | 0.20800 0. 00a00
@ 4 ssorcafctmp w2ff 1038 7.54005 21.7% | 0.07e00 0. 0000
B 4 hits 7.54e05 21.7% | 0.07a00 =0.03e00
@ & ssorcafctmpow2if 1076 4.41e05 12.7% | 0.03e00 0. 0000
@ 4 rhs 4.41005 12.7% | 0.03e00 0. 00200
@ 4 ssor.cafctmpow2ff 1038 3.09e05 B.9% | 0.03800 0. 000
O 4 jacld 3.08805 8.8% | 0.03e00 0., 00800
@ g ssorcafitmp w2 1073 | L.80e04 0.5% | 0.00e00 0., 00a00
ssorcafctmpow2f f; 1058 1.50e04  O.4% | 000800 0. 00ed0
ssar.cafctmpow2f.f 1028 1.50e03 0.0% | 0.00e00 0. 0000
@ 4 ssorcafctmpow2ff 1079 | 3.00e03 0.1% | 000200 0. 0000
@ § szorcafctmpow2if 1068 1.50e03  0.0% | 0.00e00 0. 0000
@ 4 ssor.cafctmpwff 514 1.50e03 0.0% | 0.00800 0. 00200
ssor.cafotmp.w2f.f 1038 1.50e03 0.0¥ | 0.00800 0. 000
© 4 ssor.cafitmp.w2f.f 1092 1.50803 0,08 | G.00200 Q. 0Qe(0
@ 4 ssor.cafttmp w2l 989 | 2.00e03 0,1% | @L.00e00 0L 000
ssar.cafctmpow2 f.f 1026 1.50e03  0.0% | -0.00a00 =0, O0edd
& ¢ ssorcafctmp w2f.f 1047 3.323e05 9.6% | -0.00800 0. 0000
S @ cafctmpow2f f 569 7.50203 0.2% | 0.00800 0. 0000
B Gy cafctmpow2ff 580 4.50e03  0.1% | 0.00e00 0. 0000
B ¢ |y cafctmp.w2f.f 579 3.00e03 0.1% | 0.00800 0. 00200
& 4 |y cafctmp.w2ff 577 3.00e03 0.1¥ | 0.00800 0. 00800
B 4y cafctmpow2 {800 1.50e03 0.0¥ | 9.00200 0, 00800
B Gy cafctmpowzff 576 | 2.00e03  0,1% | <0.00e00 0. 00800
D 4 |u.cafctmpow2ff 753 G.00e04 1.7% | 0.01e00 0L 00edd
@ < cafinit_ A.00e04 1.7% | 0.01e00 0. 00800
B G U cafotmpow2f 755 1.20004 0.3% | 0.00800 0. 0000
By cafcmp wa il 764 5.00203 0.2 | 0.00e00 0. 00800 =
] v || o R ] | »]

Figure A.19: Screenshot of strong scaling analysis refulthe CAF version of NAS LU

class A (size54?), using average excess work on 1, 2, 4, 8, 16, 32, and 64 CPUs.

21%, with the main routine responsible for that beiadi . Within adi , which performs
alternate direction integratiory,_sol ve has anl AEW score of12%, x_sol ve of 5%
andz _sol ve of 4%. In Figure A.27 we present the analysis results for yheol ve
routine, which performs alternate direction integratitong the y dimension. The routine

| hsy_psbody, which performs , is has ahAEW and EAEW values ofl0%, exposing
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L} _.{i._lsers},{ccfi's;t_i'(f'ﬁesealac.lj,}céf—_'ex;per'iﬁteritr,','{ﬁ-in',{_iu_—_pp-.ﬁ.ﬁ#’m i
File
|buts.cafctmp.w2f.f
| & 5 SUBRGUTINE huts(LDM3, LDK =
Scopes @ SN # samples
- buts 1.49e06 42.9% | 020800 0L 00l
@ buts. cafctmp w2f.f 143 1.39e06 40.0% | 0.22e00 =01, e
$ 4 euchange_1 1.39806 40.0% | 022800 0. O0edn i
o exchange_l.cafctmp waif 965 1.39e06 40.0% | 0.22e00 0. 0000
% @ exchange_1_pshody 1.39206 40.0% | 0.22800 0, 00200 :
9 exchange_l.cafctmp w2 f €90 1.38206 39.8% | 0.23e00 0. 00800 ;%
@ 4 cafruntime_mp _cafsynchwaitscalar_ 1.38e06 39.8% | 0.22e00 0, 0000 {-3
@ 4 CafRuntime f90:; 184 | 1.38e0f 30.8% | O.22e00 0L 00end h:'g
@ 4 cafruntimesynchwait 1.38e06 39.8% | 0.22e00 =01, 00&00 B
§ 4@ Communicationinterface.cc; 446 1.38e06 39.8% | 0.23e00 1, 00800 i
P 4 ARMCICommunicationinterface::cafsynchl| 1. 3806 39.8% | 0.23200 0. 00eqn ;'?i
@ 4 ARMCICommunicationinterface oo 18 1, 38e08 39.8% | O.27e00 Q. 00ea0
S - armi_notify_wait 1.38e06 39.8% | 0.22e00 =0, 00
@ 4 exchange_l.cafctmp w2 f 701 4.50e02  0.1% | ©.00e00 0L 00end
exchange_Ll cafctmp.wzf.f 706 1.50e03 0.0% | 0.00e00 0, 0000
exchange_1 cafctmpow2f f. 6598 | 1.50e03 0.0% | ¢.00e00 0L 00end
exchange_1 cafctmpow2f f, 955 1.50e03  0.0% | ~0.00e00 =0, 00l
huts cafctmp w2f.f 207 3.00e03  0.1% | 0.00e00 0, 0000
buts. cafctmp w2f.f 234 1.50803 0.0% | 0.00800 0. 0000
buts. cafcimp w2f.f & 1.50e03 0.0% | 0.00800 0. 0000
buts cafctmp w2 ff 215 F.00e03 0.1% | 000200 0. 000 =
1 |3: rlrlrlrh}r}rhlr"rhlrlrhlr"r}r}r}rlr"rhlrlrhlr}'r}rhhlrlrhhhhlr}'rhhhhli':l | kA |“ vvvvvvvvvvvvvvvvvvvvvvvv I":’:_‘ I | ’l

Figure A.20: Screenshot of strong scaling analysis refultthe CAF version of NAS LU
class A (size54%), using average excess work on 1, 2, 4, 8, 16, 32, and 64 CBUthe

functionssor .

the fact that the computation performedIbysy psbody doesn't scale linearly with an
increasing number of processors. In the rougingend sol ve_i nf o_psbody, TAEW
for ARMCI _Put is 1%. Calls tosyncwai t andy_sol ve_cel | have values ot % and
1% for TAEW , respectively. This shows that for BT the main factor for +smalability

now is the lack of scalability of the computation.
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other_communication
MPI_Barrier
MPI_Wait
MPI_Sendrecv

B MPI_Irecv

MPI_Recv
MPI_Isend
MPI_Send
MPI_Finalize
MPI_Init
computation

Figure A.21: Scalability of relative costs for communicatiprimitives and computation
for the MPI version of the NAS BT benchmark class A (s62é).
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= MPI_Init

W ARMCI_Fence

o ARMCI_Barrier

B ARMCI_\Wait

B ARMCI_MNbGetS

W ARMCI GetS
ARMCI_MbGet

B ARMCI_Get

W ARMCI_MNbPuts
ARMCI_Puts

o ARMCI_MbPut

mARMCI_Put

® armci_notify_wait
armci_notify
ARMCI_Finalize

W ARMCI_Init

W computation

Figure A.22: Scalability of relative costs for communicatiprimitives and computation
for the CAF version of the NAS BT benchmark class A (sizg), using the ARMCI

communication library.



CPUs| PUTs PUT vol | GETs | GET vol | notifies | waits | barriers
4 3021 | 283153800 8 196 | 2820| 2820 237
9 4830 | 252010080 13 424 | 4026 | 4026 237
16 6639 | 220849560 20 868 | 5232| 5232 237
25 8448 | 178226400 29 1600| 6438| 6438 237
36 10257 | 157997160 40 2692 | 7644 | 7644 237
49 12066 | 149735520 53 4216| 8850| 8850 237
64 13875| 139170360 68 6244 | 10056| 10056 237
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Figure A.23: Communication and synchronization volumetha CAF version of NAS
BT, class A (siz&54?).

fusersfceristifResearchfce-caf-experiments/bin/bt-mpi-ft.A

(i} 46 program MPET ﬂ
.......................... e T e ey T
Scopes |2 # samples IAEW T EAEW —'“
mpht 3.68e06 100.0 | 0.05:00 0. G0e00 =
9 @ bt 167 3.60806 93.0% | 0.05800 0.00e00
o4 adi 3.60e06 98.0% | 0.05e00 0.00e00
¢4 adif 11 1.16e06 31.6% | 0.04800 0.00800
o 4 x_solve 1.16e06 31.6% | 0.04800 0.00e00
¢ 4@ adif 13 9.27e05 25.2% | 0.02800 0. 00800 =
o gy sohve 5.27e05 25.2% | 0.02e00 0, 00800
¢ @ adif: 15 9.14805 24.8% |0.01e00 0.00800
o g z_solve 9.14e05 24.8% | 0.01e00 0. 00200
o adif 9 5.92e05 16.1% | -0.01800 .| 0.00200 ||
&4 adif 17 7.50e03 0.2% | -0.01e00 .| 0.00e00
o bt 61 3.00e04  0.8% | 0.00800 0.00e00
g btf 219 6.00803  0.2% |0.00200 0.00e00
o g T 107 4.50803 0.1% |0.00800 0.00800 =

1]

I

4]

[ ¥

Figure A.24: Screenshot of strong scaling analysis resaits1PI NAS BT class A (size
64?), using average excess work on 4, 9, 16, 25, 36, 49, and 64 .CPUs
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usersiccristiResearchicc-caf-experiments/bin/bt-mpi-ft.A

scopes (@ 0 [4] 3 # samples TAEW T EAEW :“
H_50hve 1.16e06 31.6% |0.04p00 0. 00800 .~
7 4 [i_sohe T 66| 441205 12.0% | 004800 0. 00200
o= 4 |hsy 4.41e05 12.0% | 0.04e00 0. 04e00 =
¢ w_salve f 103 1.22e05 3.3% | 0.01e00 0. Q0edd
o= 4F mii_wait 1.22e05 3.3% | 0.01e00 0, 00200
o=@ x_salve f 108 1.24e05 3.4% | 0.01e00 =0 Qe
o= 4k x_solve.f 202 2.10804  0.6% | QL0000 0, 00e00
o=@ w_salvef 71 1.50e03  0.0% | 0.00e00 0. 00e0d
x_sohve.f 140 7.50803  0.2% | 0.00e00 0, 00e00
¥ sahve.f: 140 30003 0.1% | Oo00e00 0. 00e0d
o= x_solve.f 247 F3.00e03  0.1% | 0.00e00 0.00e00 -
¥ salve f: 190 4,50903  0,1% | 000800 0, Ooedd >
N 3 KT Il [+ |

Figure A.25: Scalability of relative costs for communicatiprimitives and computation
for the CAF version of NAS BT class A (siz&?), for the routinex_sol ve, using average
excess work on 4, 9, 16, 25, 36, 49, and 64 CPUs.
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OF jusersfccristi/Research/caf-experiments/bin/btcal.A.64 -OX
File
IbLcafctmp.w2i.f
|@ 728 PROGRAM mpbt =
scopes (@& |43 # samples EAEW
3 rapht 4.77e06 100.0 | 0.21e00 0. 00800
@ 4 bt.cafctmp w2ff 690 4.63806 97.2% | 0.20800 0. 0000
@ 4 adi 4.63e06 97.2% | 0.20800 0. 0000
@ 4 adi_cafctmp w2f.f 247 1.15e06 24,1% | 0,12e00 0. 00e00
& & y_solve 1.15e06 24.1% | 0.12e00 0. 0000
@ 4 adi.cafctmp.w2ff 242 1.41e06 20.7% | 0.05e00 £, D0 e0n
@ & x_solhve 1.41e06 29.7% | 0.05200 0. 0000
© 4 adi.cafctmp.w2f.f 252 1.39e0f 29.2% | 0.04e00 0.00e00
O ¢ z_solve 1.39e06 29.2% | 0.04e00 0. 00e00 |2
@ 4 adi.cafttmp.waf.f 239 2.10e04 0.4% | 0.01e00 0L 00e0n | 2
& & cafsynchall 2.10e04 0.4% | 001800 0.00e00
G- adi.cafctmp w2 250 2.85604 0.6% | 0.00e00 0. 00800
&= adi.cafctmp w2ff 245 1.50e03  0.0% | 0.00800 0. 00800
@ 4+ adi cafctmp w2if 253 2.55e04 0.5% | 0.00e00 0., 00e0n =
@ 4 adi.cafctmp w2ff 248 3.00e03 0.1% | 0.00800 0. 0000 |
& adi.cafctmp.w2ff 243 4,50e03 0.1% | 0.00200 0. 0000 :
@ 4 adi.cafctmp.w2ff 241 5.091e05 12.4% | -0.01e00 0. 0000
@ 4 bt.cafctmp w2 i 848 £.15804 1.3% | 0.01s00 0. 0000
@ 4 cafinit_ £.15e04 1.3% | 0.01e00 0. 0000
@ & bt cafctmp.w2ff 675 2.40e04  0,5% | 0.00e00 0. 0000
@ 4§ bt cafctmp.w2f.f 572 0.00e03  0.2% | 0.00e00 ol T={e]s]
@ 4 bt cafctmp.w2f.f, 657 1.05e0d4  0.2% | 0.00800 (1.00a00
@ 4 htcafotmpw2if 721 £.00803 0.1% | 0.00200 0. 0000
© 4 ht.cafctmp w2 f 6732 1.50e02 0.0% | 0.00000 0.0000 =
4] [l

Figure A.26: Screenshot of strong scaling analysis regultthe CAF version of NAS BT
class A (size54?), using average excess work on 4, 9, 16, 25, 36, 49, and 64 .CPUs
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Q& fusersjceristi/Research/caf-experiments/bin/bt-cal.A.64. -OX
File
v_solve cafctmp.w?ff
= -
2938 SUBROUTIMNE . sohveg |E|
scopes  [@a & |43 # samples EABW =
oy solve 1.15e06 24.1% | 0.12e00 0L 0000 ot
9 4w solve cafctmp.w2f.f 2032 1.15e06 24,1% | ©.12e00 0L 00e0n @
@ v sohve_pshody 1.15e06 24.1% | 0,12e00 0.01e00 i
@ 4y solviecafctmp w2l 1680 3.889e05 B.1% | 0, 10e00 0. 0000
@ hsy 3.89e05 B5.1% | 0.10e00 0, 000
@ & |hsycafctmp w2if 856 3.80e05 8.1% | 0. 10800 0. 00200 &
O 4§ |hey_pshody 3.89e05 B.1% | 0.10e00 0 100 i
G & ysolve cafctmp w2f.f 1687 1.32e05  2.8% | 0.01e00 £, 00e00 2
@ & vy send_solve_info_pshody 1.32e05 2.8% | 0.01edf O Qe
e w_solve cafctmp w2 ff 2141 aoa0etd 1.4% | 0.01e00 0, O0eCi
@ 4@ cafputstrided_ G.a0e0d  1.4% | 0.01e00 0 Qe
®@ 4 Communicationinterface.cc; 201 £.60e04 1.4% | 0.01e00 .00800 7
@ & ARMCICommunicationinterface: cafPutStridedivil §.60e04  1,4% | 0,01e00 0. 00en i
@ ARMCICommunicationinterface oo 523 G.45004 1.4% [ 0.01e00 0, 00a00
@ 4 ARMCI_Put 6.45004 1.4% | 0,01000 0. 00edn
ARMCICammunicationinterface.cc: 457 1.50803 0.0% | 0.00200 0. 00200 =
G 4 v _solve cafctmp. w2 2145 2.40e04 0,55 | 0.00e00 0 0000 | 2
wosohve cafctmpow2ff 2120 1.50803 0,08 | 9.00200 0. 0000 2
w_solyve. cafctmp.w2ff 2117 1.50e03 0.0% | 0,00e00 0. 0000
Y sohve.cafcimp.w2f.f 2118 3.30e04  0,7% | 0,00e00 0. 0000
W sohvecafctmpw2if 2134 4.50e03  0.1% | 0.00e00 0. 00800
yosolve cafctmp w2if 2141 1.50803 0.0% | 0,00800 0. 0000
@ 4y solve cafctmpw2f.f 1702 1.50e04 0.3% | 0.01e00 00000
©= & cafruntime_rnp_cafsynchwaitscalar. 1.50e04  0.2% | 0.01e00 0. 00200
@ 4 vosolve cafctmpow2ff 1685 2.40e05 5.0 | O.0L1edir O Qe
@ g v salve_cell 2.40e05 5.0 | O.01e00 0, O0eCi
@ 4 vosolve cafctmpow2ff 1707 1.22e05 2.5% | 0.01e00 0 Qe
@ g v bhacksubstitute 1.22e05 2.5% | 0.01eln 0. 01e0n
@ g vy solve. cafctmpw2f.f 1709 4.05a04 0.8% | 0.00e00 G 000 =
[ 1 o o s e r

Figure A.27: Screenshot of strong scaling analysis refulthie CAF version of NAS BT
class A (sizes4%), for the routingy _sol ve, using average excess work on 4, 9, 16, 25, 36,
49, and 64 CPUs.
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Appendix B

Extending CAF with collective operations

Our experiments showed that the lack of language suppodditective operations leads
to suboptimal, non-performance portable user implememtatin many scientific opera-
tions collective primitives such as reductions occur ondtiigcal path, for example when
checking a convergence criteria; having a performanceapl@tway to provide collective
operations for CAF programmers is then critical.

In this section we present an extension of the CAF model wallective operations.
Many parallel algorithms [91] are designed using operatgurch as reductions, broadcast,
scatter, gather, and all-to-all communication. We pre$&hE extensions that support
these operations. We chose not to support the full set ofctexhs present in HPF, but
rather support a minimal set of operations that suffice toesga wide range of commonly
used parallel algorithms. We did not include for exampleafisional reductions, because
we did not see them utilized in the codes and algorithms tleaamalyzed. In particular,
the proposed collective primitives were sufficient to esgrthe collective communication
encountered in our CAF benchmarks.

We describe an implementation strategy for CAF collectiperations that realizes
them using MPI calls. A motivation for our design choice iat{mative implementations
of MPI optimize the collective operations, and MPI is a parfance portable translation
target. However, for platforms where there are more efficaternatives to MPIcaf c
would choose the more efficient implementation for the otie operations.

For expressiveness and ease of use, the CAF collectivetaperaghould operate on
scalar and multi-dimensional co-arrays, on private andeshaariables; a CAF compiler

runtime might optimize the implementation of the colleetoperation based on the type of
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the arguments.
A CAF programmer should be able to use collective routineshencomplete set of
process images, but also on groups of processors. The defgigacess image groups is

an orthogonal issue, and has been tackled by Dotsenko [72].

B.1 Reductions
CAF_REDUCE(SOURCE, DEST, SIZE, OPERATOR, root, [, UDFUNC]fgp])
e OPERATOR

— CAF_.SUM

— CAF_.PROD

— CAF-MAX

— CAF_MIN,

— CAF_.AND

— CAF.OR

— CAF_XOR

— UDFUNCCOMM: user defined reduction operator, commutative

— UDFUNCNONCOMM: user defined reduction operator, non-cortative
e root: image that will contain the reduction result
e UDFUNC: user defined associative reduction operator
e group: group of processors
CAF_ALLREDUCE(SOURCE, DEST, SIZE, OPERATOR [,UDFUNC][,grdlip
e OPERATOR

— CAF_.SUM



253

— CAF_PROD

— CAF_MAX

— CAF_MIN,

— CAF_AND

— CAF.OR

— CAF_XOR

— UDFUNCCOMM: user defined reduction operator, commutative

— UDFUNCNONCOMM: user defined reduction operator, non-cortative
e UDFUNC: user defined associative reduction operator
e group: group of processors
CAF_PREFIXREDUCE(SOURCE, DEST, SIZE, OPERATOR [,UDFUNC]hgp])
e OPERATOR

— CAF_.SUM

— CAF_.PROD

— CAF_MAX

— CAF_MIN,

— CAF_.AND

— CAF.OR

— CAF_XOR

— UDFUNCCOMM: user defined reduction operator, commutative

— UDFUNCNONCOMM: user defined reduction operator, non-cortative

e UDFUNC: user defined associative reduction operator
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group: group of processors

The user defined reductions operators have the followingstre:

procedure User Defi nedOperat orl nPl ace(a, b)

b

end

—aophb
procedure

where a and b have the same type and correspond to scalar(pypesgive or user-

defined types)

Comments and restrictions

for CAF_REDUCE, only the image root receives a copy of the result #ftereduc-

tion

CAF_ALLREDUCE has the semantics of an all-to-all reduction:ialages have a

copy of the results at the end

SOURCE, DEST have the same type and size SIZE is expressenhiben of ele-

ments

if group is not present, the reduction applies to all images
there is an increasing, consecutive numbering of all imaggsoup
root is a valid image number

arithmetic, relational and logical operators apply only3®URCE and DESTINA-
TION of the appropriate type

if the type for SOURCE and DEST contains pointer fields, thalues are undefined

after the reductions; pointer fields cannot be used in thedesfened operator
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B.2 Broadcast

CAF_BCAST(SOURCE, SIZE, root [,group])
e SIZE is expressed in number of elements
e root is a valid image number

o if the type for SOURCE contains pointer fields, their values andefined after the

broadcast; broadcast acts as if a bitwise copy is perforimeithé SOURCE data

B.3 Scatter/AllScatter

CAF_SCATTER(SOURCE, DEST, SIZE, root [,group])

e SOURCE and DEST have the same type

SOURCE and DEST will be treated as one-dimensional, oneebagrays for the

scatter operation

SIZE is expressed in number of elements

root is a valid image number

if the group argument is not present, the scatter operapphes to all images

there is an increasing, consecutive numbering of all imaggsoup, fromp;, to p,;

Considering SOURCE as a unidimensional array, after scatery image p (in-
cluding root) contains in DEST the array section SOURGE- py,) « SIZE + 1 :
(p — pw) x SIZE)) on the root image

e the argument SOURCE is optional on any non-root image
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Gather/AllGather

CAF_GATHER(SOURCE, DEST, SIZE, root [,group])

SOURCE and DEST have the same type

SOURCE and DEST will be treated as one-dimensional, oneebasays for the

gather operation

SIZE is expressed in number of elements

root is a valid image number

if the group argument is not present, the gather operatiphespto all images
there is an increasing, consecutive numbering of all imaggsoup, fromp;, to p,;

after gather, the rootimage contains in DES§F-p;, )«SIZE+1 : (p—pp)*xSIZE))
the contents of SOURGE : SIZFE) on image p.

the argument DEST is optional on any non-root image

CAF_ALLGATHER(SOURCE, DEST, SIZE [,group])

SOURCE and DEST have the same type

SOURCE and DEST will be treated as one-dimensional, oneebagrays for the

allgather operation

SIZE is expressed in number of elements

root is a valid image number

if the group argument is not present, the gather operatiphespto all images
there is an increasing, consecutive numbering of all imaggsoup, fromp;, to p,;

after gather, every image contains in DE§I—p, )« SIZE+1 : (p—pw)*SIZE))
the contents of SOURGE : S/ZF) on image p.
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B.5 All-to-all Communication

CAF_ALLTOALL( SOURCE, DEST, SIZE [,group])
e SOURCE and DEST have the same type

e SOURCE and DEST will be treated as one-dimensional, oneebagays for the

allgather operation
e SIZE is expressed in number of elements
e if the group argument is not present, the gather operatiphespto all images
e there is an increasing, consecutive numbering of all imaggsoup, fromp;;, t0 p.s

e after gather, every imagecontains in DEST(p—py)*SIZE+1 : (p—pp)*xSIZE))
the contents of SOURGE; — py,) * SIZE +1: (¢ — pi) * SIZE)) on imagep.

B.6 Implementation Strategy

A portable implementation strategy is to translate thedlecove operations into their cor-
responding MPI counterparts; both ARMCI and GASNet suppagroperability with
MPI. If both source and destination are co-arrays and thenyidg communication li-
brary has a more efficient implementation of a collectiverapen than the one provided
by MPI, thencaf ¢ would choose at runtime the native implementation of théectve
over the one provided by MPI. For primitive types, the tratieh is straightforward. MPI
provides a rich set of primitive types that matches the seriafitive types of Fortran 95;
caf ¢ would pass as an argument to the MPI collective operatiorMRé datatype cor-
responding to the CAF type. For user defined types, we deterati program launch the
size (including padding) of a user defined type, and declau@paque MPI datatype of the
same size as the user defined type. This approach is sufficisapport broadcast, scatter,
gather and all-to-all operations. To support user definddatons, we need to generate

functions corresponding to the user defined operators ifotiheat specified by MPI.
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voi d MPI User Defi nedFuncti on(i nvec, outvec, |en, npi_datatype)
type invec(x)
type outvec(*)
i nteger |en

i nt eger npi _dat at ype

A simple solution is to generate a wrapper with the propero$erguments, iterate
throughi nvec andout vec and call the user specified reduction operator with the cor-
responding elements froimnvec andout vec. However, this version would be very
inefficient, because it would incur a function call cost peag element. A more efficient
approach is to declare an attribute for the user defined tgeraacting as a flag to the
compiler. caf ¢ could then synthesize at compile time a user-defined remluciperator
which follows the MPI requirements, binlinesrather then calls the user defined operator.
Another argument for annotating user-defined operatohaighe reduction operator needs
to be registered with the MPI library. If we do not flagdaf ¢ the user defined operators,
then we have to generate the functions required by MPI pér ealtsite of such reduction,
which might inquire a large space penalty for programs tediopm many reductions with

user-defined operators.

B.7 Experimental Evaluation of Reductions

We have implemented support for broadcast and reductiopsimitive types incaf c
using the MPI collectives as translation target. For MGerafeplacing the suboptimal
user-written collective calls (broadcast and allreducerations) with CAF intrinsics based
on MPI, the initialization time decreased by to 40% on 64 pssors. In Figure B.1 we
present the the parallel efficiency plot for LBMHD using thetptype implementation of
CAF collective intrinsics; one observation is that our slation scheme does not introduce

a high overhead over direct calls of MPI primitives.
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Figure B.1:  Scalability of MPI and CAF variants of the LBMHDeikel on an Ita-

nium2+Myrinet 2000 cluster.



