
MPI

• Portable and widely used

• The programmer has explicit control
over data locality   and communication

• Using MPI can be difficult and error
prone

• Most of the burden for communication
optimization falls on application
developers; compiler support is
underutilized
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HPF

• The compiler is responsible for
communication and data locality

• Annotated sequential code (semiautomatic
parallelization)

• Requires heroic compiler technology

• The model limits the application
paradigms: extensions to the standard are
required for supporting irregular
computation

Programming Models 
for High-Performance Computing 

Simple and expressive models for
high performance programming

based on extensions to widely used languages

• Performance: users control data and computation
partitioning

• Portability: same language for SMPs, MPPs, and clusters

• Programmability: global address space for simplicity

Co-Array Fortran Language Finite Element Example

Co-Array Fortran

A sensible
alternative to

these extremes

• SPMD process images
–  number of images fixed during execution
–  images operate asynchronously

• Both private and shared data
–  real a(20,20)         private: a 20x20 array in each image
–  real a(20,20) [*]    shared: a 20x20 array in each image

• Simple one-sided shared memory communication

– x(:,j:j+2) = a(r,:) [p:p+2]    copy rows from p:p+2 into local
columns

• Flexible synchronization

– sync_team(team [,wait])
• team = a vector of process ids to synchronize with
• wait = a vector of processes to wait for (a subset of team)

• Pointers and dynamic allocation

• Parallel I/O

subroutine assemble(start, prin, ghost, neib, x)
  integer :: start(:), prin(:), ghost(:), neib(:)
  integer :: k1, k2, p
  real :: x(:) [*]
  call sync_all(neib)
  do p = 1, size(neib) ! Update from ghost regions
    k1 = start(p); k2 = start(p+1)-1
    x(prin(k1:k2)) = x(prin(k1:k2)) +
              x(ghost(k1:k2)) [neib(p)]
  enddo
  call sync_all(neib)
  do p = 1, size(neib) ! Update the ghost regions
    k1 = start(p); k2 = start(p+1)-1
    x(ghost(k1:k2)) [neib(p)] = x(prin(k1:k2))
  enddo
  call sync_all
end subroutine assemble

Co-Array Fortran enables simple expression of
complicated communication patterns

. . .
real(8) a(0:N+1,0:N+1)[*]
me = this_image()
. . .
! ghost cell update
a(1:N,N+1)[left(me)] = a(1:N,0)
. . .

 Implementation Status 

Research Focus 

• Enhancements to Co-Array Fortran model
• Point-to-point one-way synchronization

• Hints for matching synchronization events

• Collective operation intrinsics

• Split-phase primitives

• Synchronization strength-reduction

• Communication vectorization

• Platform-driven communication optimization
• Transform as useful from 1-sided to  two-sided and
collective communication

• Generate both fine-grain load/store and calls to
communication libraries as necessary

• Multi-model code for hierarchical architectures

• Convert Gets into Puts

• Compiler-directed parallel I/O with UIUC

• Interoperability with other programming  models

• Source-to-source code generation for wide portability

• Open source compiler will be available

• Working prototype for a subset of the language

• Current compiler implementation performs no
optimization

– each co-array access is transformed into a get/put operation
at the same point in the code

• Code generation for the widely-portable ARMCI library
for one-sided communication

• Front-end based on production-quality Open64 front
end, modified to support source-to-source compilation

PUT Translation Example

Explicit Data and Computation Partitioning 

integer  A(10,10)[*]

if (this_image() .lt. num_images()) then
  A(1:3,1:5)[this_image()+1] = A(1:3,6:10)
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Early Performance Results

NAS MG class C

NAS BT class C

type CafHandleReal8
integer:: handle
real(8):: ptr(:,:)

end type
type(CafHandleReal8) a_caf
. . .
allocate( cafBuffer_1%ptr(1:N,0:0) )
cafBuffer_2%ptr => a_caf%ptr(1:N,N+1:N+1)
cafBuffer_1%ptr = a_caf%ptr(1:N,0)
call CafArmciPutS(a_caf%handle,left(me), 
cafBuffer_1, cafBuffer_2)
deallocate( cafBuffer_1%ptr )
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