An Emerging, Portable Co-array Fortran Compiler
for High-Performance Computing

John Mellor-Crummey, Yuri Dotsenko, Cristian Coarfa, Daniel Chavarria-Miranda
{lohnmc, dotsenko, ccristi, danich}@cs.rice.edu

Co-Array Fortran

A sensible

Programming Models alternative to
for High-Performance Computing these extremes

Simple and expressive models for MPI HPF
high performance programming
based on extensions to widely used languages * Portable and widely used * The compiler is responsible for

* Performance: users control data and computation * The programmer has explicit control communication and data locality

partitioning over data locality and communication * Annotated sequential code (semiautomatic

* Portability: same language for SMPs, MPPs, and clusters * Using MPI can be difficult and error parallelization)

* Programmability: global address space for simplicity prone * Requires heroic compiler technology
* Most of the burden for communication * The model limits the application
optimization falls on application paradigms: extensions to the standard are
developers; compiler support is required for supporting irregular
underutilized computation

Co-Array Fortran Language Explicit Data and Computation Partitioning Finite Element Example
» SPMD process images | | integer A(10,10)[*] subroutine assemble(start, prin, ghost, neib, x)
— number of images fixed during execution integer :: start(:), prin(:), ghost(:), neib(:)
— Images operate asynchronously integer :: k1, k2, p
- Both private and shared data ceeee real ::x(:) [']
— real a(20,20) private: a 20x20 array in each image A(10,10) A(10,10) A(10,10) call sync_?ll(nell.a) _
— real a(20,20) [*] shared: a 20x20 array in each image do p = 1, size(heib) ! Update from ghost regions
_ _ o _ _ k1 = start(p); k2 = start(p+1)-1
- Simple one-sided shared memory communication Image 1 image 2 image N x(prin(k1:k2)) = x(prin(k1:k2)) +
— x(:,j:j*2) = a(r,:) [p:p+2] copy rows from p:p+2 into local if (this_image() .It. num_images()) then x(ghost(k1:k2)) [neib(p)]
columns - A . Ao G enddo
. o A(1:3,1:5)[this_image()+1] = A(1:3,6:10) call sync_all(neib)
 Flexible synchronization do p = 1, size(neib) ! Update the ghost regions
— sync_team(team [,wait]) k1 = start(p); k2 = start(p+1)-1
« team = a vector of process ids to synchronize with A(10,10) A(10)10)]| °°°°* A(10,10) x(ghost(k1:k2)) [neib(p)] = x(prin(k1:k2))
- wait = a vector of processes to wait for (a subset of team) ’ ’ ’ enddo
- Pointers and dynamic allocation Sl sync_a_ll
image 1 image 2 image N end SUbrOUtlne assemble
- Parallel 1/0 | |
Co-Array Fortran enables simple expression of
complicated communication patterns
Research Focus PUT Translation Example Early Performance Results
* Enhancements to Co-Array Fortran model 0.5

* Point-to-point one-way synchronization

* Hints for matching synchronization events

* Collective operati?)n)i,ntrinsics real(8) a(0:N+1,0:N+1)["] s

* Split-phase primitives me = this_image()
* Synchronization strength-reduction
* Communication vectorization

* Platform-driven communication optimization

* Transform as useful from 1-sided to two-sided and a(1:N,N+1)[left(me)] = a(1:N,0)
collective communication

* Generate both fine-grain load/store and calls to
communication libraries as necessary

* Multi-model code for hierarchical architectures

0.9

o
o

Efficiency
(]
L“\l
[#3]

I ghost cell update

o
--..J

0.65

5 e 5 5 5 |

E E - | E E

1 | | | z z z
- | | | ; ; |

* Convert Gets into Puts 0 10 20 30 40 50 60 70
e Compiler-directed parallel I/0 with UIUC type CafHandleReal8 TS
* Interoperability with other programming models integer:: handle 0_55 , | | | l
real(8):: ptr(:,:) NAS BT class C = car
Implementation Status end type 0 T U TR SRS W74 s O R S

* Source-to-source code generation for wide portability type(CafHandleReal8) a_caf

0.55

* Open source compiler will be available

Efficiency

allocate(cafBuffer_1%ptr(1:N,0:0))
cafBuffer_2%ptr => a_caf%ptr(1:N,N+1:N+1)

* Working prototype for a subset of the language

o
()
I

* Current compiler implementation performs no
optimization cafBuffer_1%ptr = a_caf%ptr(1:N,0)

0.45-

— each co-array access is transformed into a get/put operation call CafArmciPutS(a_caf%handle,left(me),

t th int in the cod
at the same point in the code cafBuffer_1, cafBuffer_2)

- Code generation for the widely-portable ARMCI library i 04! 150 S 450 - 650 ?50 SR
for one-sided communication deallocate(cafBuffer_1%ptr) Number of Procossors

IA64 | Myrinet 2000

* Front-end based on production-quality Open64 front
end, modified to support source-to-source compilation

