Experiences with Co-Array Fortran on Hardware
Shared Memory Platforms*

Yuri Dotsenko, Cristian Coarfa, John Mellor-Crummey, arahi2l Chavarria-Miranda

Rice University, Houston TX 77005, USA

Abstract. When performing source-to-source compilation of Co-affaytran
(CAF) programs into SPMD Fortran 90 codes for shared-memuauitiproces-
sors, there are several ways of representing and manipgildéta at the For-
tran 90 language level. We describe a set of implementatinnatives and
evaluate their performance implications for CAF variarftthe STREAM, Ran-
dom Access, Spark98 and NAS MG & SP benchmarks. We compareetiier-
mance of library-based implementations of one-sided conication with fine-
grain communication that accesses remote data using |l@hdtare operations.
Our experiments show that using application-level loadkstares for fine-grain
communication can improve performance by as much as a fatgs; however,
codes requiring only coarse-grain communication can aetietter performance
by using an architecture’s tunegnt py for bulk data movement.

1 Introduction

Co-array Fortran (CAF) [1] has been proposed as a practialllpl programming
model for high-performance parallel systems. CAF is a dlabdress space model for
single-program-multiple-data (SPMD) parallel programgthat consists of a small set
of extensions to Fortran 90. To explore the potential of phéyramming model, we are
building caf c—a multiplatform compiler for CAF. Our goal faraf c is to achieve
performance transparency, namely, to deliver the full power of the hardware platform
to the application on a wide range of parallel systems.

In this paper, we investigate how to generate efficient cadenficroprocessor-
based scalable shared-memory multiprocessors with ndaromshared memory ac-
cess (NUMA). Such machines are organized as a set of nodbseaith node con-
taining one or more processors and memory. Nodes are cathesing a low-latency,
high-bandwidth interconnect. Each processor can accessémory on its node with
low latency and memory on other nodes with higher latencys Ethass of systems
includes platforms such as the SGI Altix [2], the SGI Orig8).[Communication in

* This work was supported in part by the Department of EnerggeurGrant DE-FC03-
01ER25504/A000, the Los Alamos Computer Science Inst{itA€Sl) through LANL con-
tract number 03891-99-23 as part of the prime contract (\O67BNG-36) between the DOE
and the Regents of the University of California, Texas AdeehTechnology Program under
Grant 003604-0059-2001, and Compag Computer Corporatiderua cooperative research
agreement. This research was performed in part using theddialr Science Computing Facil-
ity (MSCF) in the William R. Wiley Environmental Molecularcinces Laboratory, a national
scientific user facility sponsored by the U.S. DepartmenEnérgy’s Office of Biological
and Environmental Research and located at the Pacific NestiMational Laboratory. Pacific
Northwest is operated for the Department of Energy by Battel

these systems occurs via cache line data transfers. Accaskata element on a remote
node causes the cache line containing the data element &idbeé into the cache of

the requesting node. On such systems, coarse-grain coroationiis accomplished by

moving a group of cache lines individually.

caf ¢ uses a source-to-source translation approach to codeagiemetransform-
ing CAF into a Fortran 90 node program augmented with comoatioin operations.
This enables a separation of concensf ¢ can leave the details of back-end code op-
timization to a Fortran 90 compiler and focus on managinglfelism, communication
and synchronization.

When transforming CAF into SPMD Fortran 90 node programsli@ared-memory
multiprocessors, there are several possible ways of reptieg and manipulating co-
array data at the Fortran 90 language level. We explore akslenices for representing
shared data for co-arrays and accessing both local and eeraadrray data. We evalu-
ate the performance implications of these choices for s¢déifferent codes including
CAF variants of the STREAM [4], Random Access [5], Spark9B &éhd NAS MG
& SP benchmarks [7]. We also compare the performance of theé @sions against
implementations of the same benchmarks written using MPafi8 OpenMP [9], the
most widely used parallel programming models.

In the next section, we briefly review the Co-array Fortrarglaage and commu-
nication libraries used by our generated code. In Sectiove3jescribe the alternative
code shapes that we investigate in this study. In Sectioredjescribe the benchmark
codes that we study and our experimental results compaifiiegaht strategies for rep-
resenting and accessing shared data. We summarize ourgndiSection 5.

2 Background

Co-Array Fortran. CAF is a global address space model for SPMD parallel program
ming that consists of a small set of extensions to FortradB@xecuting CAF program
consists of a static collection of asynchronous procesg@naCAF programs explicitly
manage data locality and computation distribution. CARuits distributed data using
a natural extension to Fortran 90 syntax. For example, teadgioni nt eger

x(n, M [*] declares a shared co-array withx m integers local to each process im-
age. The dimensions inside brackets are called co-dimesisito-arrays may also be
declared for user-defined types as well as primitive typescal section of a co-array
may be a singleton instance of a type rather than an arraypefitystances. Instead of
explicitly coding message exchanges to obtain data belgrtgiother processes, a CAF
program can directly reference non-local values using &emnsion to Fortran 90 syntax
for subscripted references. For instance, propesan read the first column of data in
co-arrayx from proces9+1 with the right-hand side reference xq : , 1) [p+1] .
CAF also includes synchronization primitives. Since batimote data access and syn-
chronization are language primitives, they are amenabt®topiler optimization. A
more complete description of the CAF language can be fowsehlere [1].

Shared Memory Access Library (SHMEM). The SHMEM library [10], developed
by SGlI, provides an application programming interface (ABr NUMA machines

such as the SGI Altix and Origin. For SPMD programs, SHMEMpsrfs remote ac-
cess to symmetric data objects—arrays or variables that with the same size, type

and relative address in all processes. Examples of symotitta objects include For-
tran COMMON block or SAVE variables and objects allocateairfrthe symmetric
heap [10]. The SHMEM API contains routines for data transf@ng either contigu-
ous or strided reads and writes, collective operations agdiroadcast and reductions,
barrier synchronization and atomic memory operations. EiWMlso supports remote
pointers, which enable direct access to data objects owyaddther process.

Aggregate Remote Memory Copy Interface.Thecaf ¢ compiler generates code that
uses the Aggregate Remote Memory Copy Interface (ARMCIHd multi-platform
library for high-performance one-sided (get and put) comitation—as its imple-
mentation substrate for global address space communic&ioe-sided communica-
tion separates data movement from synchronization; thisegparticularly useful for
simplifying the coding of irregular applications. ARMCIgrides both blocking and
split-phase non-blocking primitives for one-sided comimation. ARMCI supports
non-contiguous data transfers. The latest version of AR&forms NUMA-aware
memory allocation on the SGI Altix and Origin platforms ugithe SHMEM library’s
shmal | oc primitive.

3 Implementing CAF on Shared Memory Architectures

Thecaf ¢ compiler translates CAF programs into Fortran 90 node rograugmented
with communication operations. In previous work [12], waeclébed a translation strat-
egy for generating portable code and performed a prelimieaaluation of the code’s
performance on several cluster architectures. The pertadile we generate allocates
memory for co-array data outside the Fortran 90 runtimeesysinitializes Fortran 90
pointers so that the node program can use them to accesstweeatay data, and per-
forms communication using ARM@UT andGET operations.

As we experimented witbaf c-generated code on more parallel architectures [13],
we found that our generated code was not meeting our goatfafrpgance transparency
across the range of architectures and codes. While gemgmatde to use Fortran 90
pointers to access local co-array data is a natural andigerg@proach, we found that
in many cases the node performanceaf c-generated code using Fortran 90 pointers
was often significantly slower than Fortran 90 code usingyarOur experiments led
us to conclude that performance irregularities we obsemes@ a result of insufficient
optimization of pointer-based codes by node compilers.

In [13], we described generating communication using ARNOT andGET prim-
itives. Though this approachis well-suited to cluster @etiures, it fails to fully exploit
the capabilities of shared-memory architectures. In estto clusters, shared memory
architectures provide the ability to access remote memuwegilly via load and store
instructions, which makes fine-grain remote accesses much &fficient. On shared-
memory multiprocessors, Fortran 90 references can be osactess remote data di-
rectly, avoiding the overhead of calling library primitsséor communication.

In this paper we compare Fortran 90 representations of COMMIOck and SAVE
co-arrays on scalable shared-memory multiprocessors dotti one that yields su-
perior performance for both local computation and accessnmte data. We report
our findings for two NUMA SGI platforms (Altix 3000 and Origip000) and their
corresponding compilers (Intel and SGI MIPSPro Fortran miters). An important

conclusion of our study is that no single Fortran 90 co-arepresentation and code
generation strategy yields the best performance acroaschlitectures and Fortran 90
compilers. Moreover, two co-array representations carsked profitably together (one
for effective local accesses, the other for effective renamicesses) to achieve the best
results. An appealing characteristic of CAF is that a CAF piben can automatically
tailor code to a particular architecture and use whatevearcay representations, lo-
cal data access methods, and communication strategieeedecdto deliver the best
performance.

3.1 Representing Co-arrays for Efficient Local Computation

To achieve the best performance for CAF applications, itit&cal to support efficient
computation on co-array data. Becaus# ¢ uses source-to-source translation into
Fortran 90, this leads to the question of what is the bestfsEbxran 90 constructs
for representing and referencing co-array data. Therevewertajor factors affecting
the decision: (i) how well a particular back-end Fortran 8hpiler optimizes different
kinds of data references, and (ii) hardware and operatistesy capabilities of the
target architecture.

Most Fortran compilers effectively optimize referencesC@MMON block and
SAVE variables, but fall short optimizing the same compaotatvhen data is accessed
using Cray or Fortran 90 pointers. The principal stumblitagkis alias analysis in the
presence of pointers. COMMON block and SAVE variables asasedubroutine formal
arguments in Fortran 90 cannot alias, while Cray and FoRfapointers can. When
compiling a CAF prograntaf ¢ knows that in the absence of Fortran EQUIVALENCE
statements COMMON block and SAVE co-arrays occupy noniapeing regions of
memory; however, this information is not conveyed to a bawl-compiler ifcaf ¢
generates code to access local co-array data through poiGtnservative assumptions
about aliases cause back-end compilers to forgo criticdébpraance optimizations such
as software pipelining and unroll-and-jam, among othessa& but not all, Fortran 90
compilers have flags that enable users to specify that psidte not alias, which can
ameliorate the effects of analysis imprecision.

Besides the aliasing problem, using Fortran 90 pointerstess data can increase
register pressure and inhibit software prefetching. Thapstof a Fortran 90 pointer
is not known at compile time; therefore, bounds and stridesnhat constant and thus
occupy extra registers, increasing register pressure. &tsompiler has no knowledge
whether the memory pointed to by a Fortran 90 pointer is goatiis or strided, which
complicates generation of software prefetch instructions

The hardware and the operating system impose extra cantstai whether a par-
ticular co-array representation is appropriate. For exangm a shared-memory system
a co-array should not be represented as a Fortran 90 COMM@ablaif a COMMON
block cannot be mapped into multiple process images. Belewdigcuss five possible
Fortran 90 representations for the local part of a co-araaybler eal a(10, 20) [*] .

Fortran 90 pointer. Figure 1(a) shows the representation of co-array data fiest u
by caf c. At program launchgaf ¢’s run-time system allocates memory to hafd x
20 array of double precision numbers and initializesdhes ocal field to point to it.
This approach enabled us to achieve performance roughlsl ¢guhat of MPI
on an Itanium2 cluster with a Myrinet2000 interconnect gdime Intel Fortran com-

type t1l

real, pointer :: local(:,:) subroutine foo(...)
end type t1 real a(10,20)[*]
type (t1) ca common /ach/ a

() Fortran 90 pointer representation. end subroutine foo
(e) Original subroutine.

type t2
real :: |ocal (10, 20) .
end type t2 ! subroutine-w apper
type (t2), pointer :: ca subroutine foo(...))
)) ! F90 pointer representation of a
(b) Pointer to structure representation. . ..
call foo_body(ca%ocal (1,1),...)
real :: alocal (10, 20) end subroutine foo
pointer (aptr, alocal) | gubro_uti ns_ bobdyd o |)
i i subroutine foo_body(a.ocal,...

(c) Cray pointer representation. real ! alocal (10, 20)

real :: ca(10,20) end subroutine foo_body

comon /cacb/ ca

(d) COMMON block representation. (f) Parameter representation.

Fig. 1. Fortran 90 representations for co-array local data.

piler v7.0 (using a “no-aliasing” compiler flag) to compdaf c's generated code [12].
Other compilers do not optimize Fortran 90 pointers as &ffely. Potential aliasing of

Fortran 90 or Cray pointers inhibits some high-level logmformations in the HP For-
tran compiler for the Alpha architecture. The absence ofatfiesignal the HP Alpha

Fortran compiler that pointers don’t alias forced us to exphlternative strategies for
representing and referencing co-arrays. Similarly, or8B&Origin 2000, the MIPSPro

Fortran 90 compiler does not optimize Fortran 90 pointeznexices effectively.

Fortran 90 pointer to structure. In contrast to the Fortran 90 pointer representation
shown in Figure 1(a), thpointer-to-structure shown in Figure 1(b) conveys constant
array bounds and contiguity to the back-end compiler.

Cray pointer. Figure 1(c) shows how a Cray pointer can be used to reprekent t
local portion of a co-array. This representation has sinifaperties to the pointer-to-
structure representation. Though the Cray pointer is naradsird Fortran 90 construct,
many Fortran 90 compilers support it.

COMMON block. On the SGI Altix and Origin architectures, the local part afca
array can be represented as a COMMON variable in each SPM&gsdmage (as
shown in Figure 1(d)) and mapped into remote images as synedata objects using
SHMEM library primitives. References to local co-arrayalare expressed as refer-
ences to COMMON block variables. This code shape is the nmehable to back-end
compiler optimizations and results in the best performdocéocal computation on
COMMON and SAVE co-array variables (see Section 4.1).

Subroutine parameter representation. To avoid pessimistic assumptions about alias-
ing, aprocedure splitting technique can be used. If one or more COMMON block or
SAVE co-arrays are accessed intensively within a procedueerocedure can be split
into wrapper and body procedures (see Figures 1(e) and Tffg) wrapper procedure
passes all (non-EQUIVALENCEd) COMMON block and SAVE coags used in the
original subroutine to the body procedure as explicit-shaguments within the body
procedure, these variables are then referenced as rougumants. This representation

! Fortran 90 argument passing styles are described in digeivbere [14].

DO J=1,N

DO J=1, N cal | CafGetScalar(A h, A(J), p, tnp)
C(J3) =A(J) [pl o(J) =t mp -
END DO END DO

(b) General communication code
(a) Remote element access

Fig. 2. General communication code generation.

enablegaf c to pass bounds and contiguity information to the back-emajpiier. The
procedure splitting technique proved effective for both P Alpha Fortran compiler
and the Intel Fortran compiler.

3.2 Code Generation for Remote Accesses
In CAF, communication events are expressed at the langeagketly using the bracket
notation for co-dimensions to reference remote data. ThE fdgramming model is
explicit enough that a user can perform communication aptittons such as vector-
ization or aggregation at the source level. To facilitatengetability while enabling
code to be tailored to a particular target systemaf ¢ uses an abstract interface for
instantiating one-sided communication operations. Guiyecaf ¢ does not vector-
ize communication and communication is placed adjacertdcstatement in which a
non-local reference appears.

Here we describe several candidate code shapes for coeanmayunication; these
range from library-based platform-independent commuitindo several strategies for
expressing fine-grain load/store communication on shaedony systems.

Communication generation for generic parallel architectues. To access data re-
siding on a remote nodeaf ¢ generates ARMCI calls. Unless the statement causing
communication is a simple copy, temporary storage is aémttn hold non-local data.

Consider the statememt(:) = b(:)[p] + ..., which reads co-array data
for b from another process image. Firsaf ¢ allocates a temporary_t enp, just
prior to the statement to hold the valueldf:) from imagep. caf ¢ adds an ARMCI
GET operation to retrieve the data from imagerewrites the statement ag:) =
btenmp(:) + ... andinserts code to deallocdig enp after the statement. For a
statement containing a co-array write to a remote imagéy asc(:)[p] = ...,
caf ¢ inserts allocation of a temporan.t enp prior to the statement. Theoaf c
rewrites the statement to store its result ih enp, adds an ARMCPUT operation after
the statement to perform the non-local write and insertg ¢odleallocate _t enp.

Communication generation for shared memory architectures Library-based com-
munication adds unnecessary overhead for fine-grain conaation on shared mem-
ory architectures. Loads and stores can be used to diremtlsa remote data more
efficiently. Here we describe several representationsierdirain load/store access to
remote co-array data.

Fortran 90 pointers. With proper initialization, Fortran 90 pointers can be usedi-
rectly address non-local co-array data. The CAF runtimeaiio provides the virtual
address of a co-array on remote images; this is used to seFapran 90 pointer for
referencing the remote co-array. An example of this stsaitegresented in Figure 3(a).
The generated code accesses remote data by dereferencomyan 0 pointer, for

which Fortran 90 compilers generate direct loads and stbwdsgure 3(a), the proce-
dureCaf Set Pt r is called for every access; this adds significant overheadktifg
pointer initialization outside the loop as shown in Figufle)2an substantially improve
performance. To perform this optimization automaticallyf ¢ needs to determine that
the process image number for a non-local co-array referisioep invariant.

DO J=1, N ptrA=>A(1: N)
ptr A=>A(J) call CafSetPtr(ptrA p, A h)
call CafSetPtr(ptrA p, A_h) DO J=1,N
C(J)=ptrA C(J) =ptrA(J)

END DO END DO

(a) Fortran 90 pointer to remote data (b) Hoisted Fortran 90 pointer initialization

Fig. 3. Fortran 90 pointer access to remote data.

Vector of Fortran 90 pointers. An alternate representation that doesn’t require pointer
hoisting for good performance is to precompute a vector wiote pointers for all the
process images per co-array. This strategy should work feelbarallel systems of
modest size. Currently, all shared memory architecturest thés requirement. In this
case, the remote reference in the code example from Figajevduld become:

C(J) = ptrArrayA(p) %ptrA(J).

Cray pointers. We also explored a class of shared-memory code generatiae-st
gies based on the SHMEM library. After allocating shared memvith shmal | oc,
one can usshnmempt r to initialize a Cray pointer to the remote data. This pointer
can then be used to access the remote data. Figure 4(a) tsreseanslation of the
code in Figure 2 usinghnmempt r . Without hoisting pointer initialization as shown
in Figure 4(b), this code incurs a performance penalty sintib the code shown in
Figure 3(a).

PO NTER(ptr, ptrA) PO NTER(ptr, ptrA)
DO J=1,N ptr = shmem ptr (A(1), p)
ptr = shnemptr(A(J), p) DO J=1,N
C(J)=ptrA C(J) =ptrA(J)
END DO END DO
(a) Cray pointer to remote data (b) Hoisted Cray pointer initialization

Fig. 4. Cray pointer access to remote data.

4 Experiments and Discussion

Currently,caf ¢ generates code that uses Fortran 90 pointers for referémdesal
co-array data. To access remote co-array elemeafsg can either generate ARMCI
calls or initialize Fortran 90 pointers for fine-grain lostthre communication. Initial-
ization of pointers to remote co-array data occurs immediadrior to statements ref-
erencing non-local data; pointer initialization is not yettomatically hoisted out of
loops. To evaluate the performance of alternate co-arfagsentations and communi-
cation strategies, we hand-modified code generatexhify or hand-coded them. For
instance, to evaluate the efficiency of using SHMEM insteBARMCI for commu-
nication, we hand-modifieclaf c-generated code to uséanemput /shrremget for
both fine-grain and coarse-grain accesses.

We used two NUMA platforms for our experiments: an SGI Alti@08? and an
SGI Origin 2008. We used the STREAM benchmark to determine the best co-array
representation for local and remote accesses. To deteth@réghest-performing rep-
resentation for fine-grain remote accesses we studied thedRaAccess and Spark98
benchmarks. To investigate the scalability of CAF code$ widarse-grain communi-
cation, we show results for the NPB benchmarks SP and MG.

4.1 STREAM

The STREAM [4] benchmark is a simple synthetic benchmarlgmam that measures
sustainable memory bandwidth in MB/E){ bytes/s) and the corresponding computa-
tion rate for simple vector kernels. The top half of Figurehdws vector kernels for
a Fortran 90 version of the benchmark. The size of each ahayld exceed the ca-
pacity of the last level of cache. The performance of condpdlede for the STREAM
benchmark also depends upon the quality of the code’s irt&trustrearfh.

DO J=1, N DO J=1, N DO J=1, N DO J=1, N
C(J) =A(J) B(J) =s*C(J) C(J)=A(J) +B(J) A(J) =B(J) +s*C(J)
END DO END DO END DO END DO
(a) Copy (b) Scale (c) Add (d) Triad
DO J=1, N DO J=1, N DO J=1, N DO J=1, N
C(J) =A(J) [p] B(J) =s*C(J)[p]) =A(J) [p] +B(I)[p] A(J)=B(J)[p] +s*C(J)[p]
END DO END DO END DO END DO
(e) CAF Copy (f) CAF Scale (g) CAF Add (h) CAF Triad

Fig.5. The STREAM benchmark kernels (F90 & CAF).

We designed two CAF versions of the STREAM benchmark: onevéduate the
representations for local co-array accesses, and a sec@vdltiate the remote access
code for both fine-grain accesses and bulk communicatidie Tapresents STREAM
bandwidth measurements on the SGI Altix 3000 and the SGIi®2iQ00 platforms.
Evaluation of local co-array access performanceTlo evaluate the performance of lo-
cal co-array accesses, we adapted the STREAM benchmarkdsridg A, B andC
as co-arrays and keeping the kernels from the top half ofrEi§untact. We used the
Fortran 90 version of STREAM with the arrays A, B and C in a COMNIblock as a
baseline for comparison The results are shown in the loc@dszcpart of the Table 1.
The results for the COMMON block representation are the sase results of the
original Fortran 90. The Fortran 90 pointer representatigthout the “no-aliasing”
compiler flag yields only 30% of the best performance for lac@ess; it is not always
possible to use no-aliasing flags because user programsinaigihaliasing unrelated to
co-array usage. On both architectures, the results shawhthanost efficient represen-
tation for co-array local accesses is as COMMON block véemhThis representation

2 Altix 3000: 128 Itanium2 1.5GHz processors with 6MB L3 cached 128 GB RAM, running
the Linux64 OS with the 2.4.21 kernel and the 8.0 Intel coerpil

% Origin 2000: 16 MIPS R12000 processors with 8MB L2 cache &h@B RAM, running IRIX
6.5 and the MIPSpro Compilers version 7.3.1.3m

4 On Altix, we use-overridelinits -O3 -tpp2 -fnoalias for the Intel 8.0 com-
piler. On the Origin, we use64 - O3 for the MIPSpro compiler.

| [SGIAmX3000]| _SGIOrigin 2000 |

[Program representation [[Copy[Scal¢ Add[Triad[[Copy|[ScalgAdd][Triad]
Fortran, COMMON block arrays 3284 31443628 3802 334] 293] 353 33§
Local access, F90 pointer, w/o no-aliasing flag 1009 92911332 1345| 323 276 311 299
Local access, F90 pointer 3327131283612 3804/ 323 277|312 298
Local access, F90 pointer to structure 3209 3107/3629 3824][334] 293 354| 335
Local access, Cray pointer 325430613567 3716| 334] 293 354| 335
Local access, split procedure 332231583611 3808| 334] 288 354| 332
Local access, vector of F90 pointers 327731063616 3802 319 288 312 302
Remote access, general strategy 33| 32| 24 24| 11| 11| 8 8
Remote access bulk, general strategy 239213281163 1177 273 115 99| 98|
Remote access, F90 pointer 44] 44| 34] 35| 10] 10] 7 7
Remote access bulk, F90 pointer 19801 22861997/ 2004|| 138 153 182 188|
Remote access, hoisted F90 pointer 1979 22902004 2010|| 294 268[293 282
Remote access, shmeget 104] 102 77| 77| 72| 70| 57| 56
Remote access, Cray pointer 71 69| 60 60| 26] 26| 19| 19
Remote access bulk, Cray ptr 231324972078 2102)| 346| 294] 346 332
Remote access, hoisted Cray pointer, w/o no-aliasing| 2810 2231|2059 2066[| 286/ 255 283| 275
Remote access, hoisted Cray pointer 2349 22332057/ 2073 346 295 347| 332
Remote access, vector of F90 pointers 2280 24992073 2105 316 291] 306 280
Remote access, hybrid representation 2417125792049 2062 350 295 347| 333
Remote access, OpenMP 23971 2307/2033 2052 312 301| 317| 287

Table 1.Bandwidth for STREAM in MB/s on the SGI Altix 3000 and the SGiign 2000.

enables the most effective optimization by the back-entt&e90 compiler; however,
it can be used only for COMMON and SAVE co-arrays; a diffenegiresentation is
necessary for allocatable co-arrays.

Evaluation of remote co-array access performancélVe evaluated the performance
of remote reads by modifying the STREAM kernels so that A,Bf€ co-arrays, and
the references on the right-hand side are all remote. Thitirescode is shown in the
bottom half of Figure 5. We also experimented with a bulk iersin which the ker-
nel loops are written in Fortran 90 array section notatidme Tesults presented in the
Table 1 correspond to the following code generation optiémsboth fine-grain and
bulk accesses): the library-based communication with ey buffers using ARMCI
calls, Fortran 90 pointers, Fortran 90 pointers with th&atization hoisted out of the
kernel loops, library-based communication using SHMEMnjitives, Cray pointers,
Cray pointers with hoisted initialization without the ntaging flag, Cray pointers with
hoisted initialization, and a vector of Fortran 90 pointersemote data. The next result
corresponds to a hybrid representation: using the COMMQigkbiepresentation for
co-array local accesses and Cray pointers for remote axeBke last result corre-
sponds to an OpenMP implementation of the STREAM benchmadkd in a similar
style to the CAF versions; this is provided to compare the @&Fsions against an
established shared memory programming model.

The best performance for fine-grain remote accesses isvachig the versions that
use Cray pointers or Fortran 90 pointers to access remadenddt the initialization of
the pointers hoisted outside loops. This shows that hgjstiitialization of pointers
to remote data is imperative for both Fortran 90 pointers@ray pointers. Using the
vector of Fortran 90 pointers representation uses a singblategy to hoist pointer
initialization that requires no analysis, yet achieveseatable performance. Using a
function call per each fine-grain access incurs a factor gg&@formance degradation
on Altix and a factor of five on the Origin.

For bulk access, the versions that use Fortran 90 pointeZsayr pointers perform
better for the kernels Scale, Add and Triad than the generaian (1.5-2 times bet-
ter on Altix and 2.5-3 times better on Origin), which usesférs for non-local data.
Copying into buffers degrades performance significantiytifi@se kernels. For Copy,
the general version does not use an intermediate buffdeadsit usesrenctpy to
transfer the data directly into th@array and thus achieves high performance.

We implemented an OpenMP version of STREAM that performslaimemote
data acesses. On Altix, the OpenMP version delivered padoce similar to the CAF
implementation for the Copy, Add, and Triad kernels, and 90fthe Scale kernel. On
Origin, the OpenMP version achieved 86-90% of the perfoaea the CAF version.

In conclusion, for top performance on the Altix and Origiafibrms, we need dis-
tinct representations for co-array local and remote aese$®r COMMON and SAVE
variables, local co-array data should reside in COMMON kdoar be represented as
subroutine dummy arguments; for remote accessafbc should generate communi-
cation code based on Cray pointers with hoisted initialtirat

4.2 Random Access

To evaluate the quality of the CAF compiler generated codefiplications that re-
quire fine-grain accesses, we selected the Random Acceshrbark from the HPC
Challenge benchmark suite [5], which measures the ratendira updates of memory,
and implemented a CAF version.

The serial version of the benchmark declares a large maaty @abl e of 64-bit
words and a small substitution tatdé abl e to randomize values in the large array.
TheTabl e hasthe siz&abl eSi ze = 2™ words. After initializingTabl e, the code
performs a number of random updatesTabl e locations. The kernel of the serial
benchmark is shown in Figure 6 (a).

do i = 0, 4*Tabl eSize do i = 0, 4*TableSize
pos = <random number in gpos = <random nunber in
[0, Tabl eSi ze- 1] > [0, d obal Tabl eSi ze-1] >
pos2 = <pos shifted to index ing = gpos div Tabl eSize
i nside stable> pos = gpos nuq TabIeSi;e
Tabl e(pos) = Tabl e(pos) xor pos2 = <pos shifted to index
st abl e(pos2) i nside stabl e>
end do Tabl e(pos)[i mg] = Tabl e(pos)[inmg] xor
st abl e(pos2)
end do
(a) Sequential Random Access (b) CAF Random Access

Fig. 6. Random Access Benchmark.

In the CAF implementation, the global table is a co-arfi@bl eSi ze words re-
side on eachimage, so that the aggregate si@edbal Tabl eSi ze = Tabl eSi ze
* Nunber O | nages. Each image has a private copy of the substitution table. All
images concurrently generate random global indices arfdipethe update of the cor-
responding locations. No synchronization is used for comett updates (errors on up
to 1% of the locations due to race conditions are acceptafie) kernel for all of our
CAF variants of the benchmark is shown in Figure 6 (b).

A parallel MPI version [5] is available that uses a bucket sdgorithm to cache
a number of remote updates locally. Compared to the CAFmerine bucket version

improves locality, increases communication granulanitgt decreases TLB misses for
modest numbers of processors.

Our goal is to evaluate the quality of source-to-sourcestedion for applications
where fine-grain accesses are preferred due to the natuhe afpplication. Previous
studies have shown the difficulty of improving the grantjeof fine-grain shared mem-
ory applications [15]. We use the Random Access benchmark asalog of a complex
fine-grain application. For this reason, we did not impletrtka bucket sorted version
in CAF, but instead focused on the pure fine-grain versioegured above.

The results of Random Access with different co-array regmmesgtions and code gen-
eration strategies are presented in Table 2 for the SGI ©200 architecture and in
Table 3 for the SGI Altix 3000 architecture. The results agorted in MUPs]0° up-
dates per second, per processor for two main table sizes: dMBR56MB per image,
simulating an application with modest memory requiremamis an application with
high memory requirements. All experiments were done on agpa@fitwo number of
processors, so that we can repldtess andnmods with fast bit operations.

[Version [[sizeper proc= IMB [[sizeper proc = 256 MB |
[#procs][1 2] 4] 8J16]|1[2]4]8]16]
CAF vect. of F90 ptr4[10.061.04/0.52[0.250.11][1.12[0.81]0.57]0.39 0.2]
CAF F90 pointer [[0.31/0.25 0.2]0.16/0.15[]0.24/0.23/0.21]0.18]0.12
CAF Cray pointer [|12.161.11/0.530.250.11]|1.11/0.88/0.58 0.4/0.21]

CAF shmrem 2.36|0.77)0.44/0.250.11{|0.86{0.65/0.53/0.36/0.19
CAF general comm|| 0.41{0.31]0.25 0.2{0.09/{0.33 0.3]0.280.23/0.14|
OpenMP 18.931.18/0.52/0.3200.17|| 1.1/0.81{0.62/0.450.23|

[MPIbucket 2048 [[15.8 4.1]3.252.49 0.1]|1.150.850.690.66 0.1]

Table 2. Random Access performance on the Origin 2000 in MUPSs pelegsax.

[Version I size per proc = IMB [[sizeper proc = 256 MB
| #iprocs]] 1 [2 | 4 | 8 [16]32]| 1 [2] 4[8[16]32]
CAF vect. of F90 ptrg|{47.6614.85 3.33 1.731.12(0.73(5.02/4.19/2.88/1.56(1.17/0.76
CAF F90 pointer 1.6/ 1.5 1.14 0.880.730.55|1.281.27| 1.1]/0.92/0.74/0.59
CAF Cray pointer {{56.3915.60 3.32 1.731.130.75(5.14{4.232.91]1.81]1.34]0.76|

CAF shnem 4.43 3.66 2.03 1.320.96/0.67]|2.57/2.44]1.91]1.39/1.11/0.69
CAF general comm][1.83 1.66 1.13 0.81]0.630.47]]1.37/1.34/1.11]0.81]0.730.52
OpenMP 58.9115.47 3.1 1.370.91]0.73]5.184.282.961.551.17 —

[_MPI bucket 2048 [[59.8121.0§16.4010.545.47]1.965.21]3.853.66/3.363.162.89
Table 3.Random Access performance on the Altix 3000 in MUPs per psme

Each table presents results in MUPs per processor for sememts of Random
Access.CAF vector of FO0 ptrs. uses a vector of Fortran 90 pointers to represent co-
array dataCAF F90 pointer uses Fortran 90 pointers to directly access co-array data.
CAF Cray pointer uses a vector of integers to store the addresses of co-aatayAl
Cray pointer is initialized in place to point to remote data éhen used to perform an
update CAF shmemusesshmemput andshmemget functions called directly from
Fortran.CAF general comm. uses the ARMCI functions to access co-array dit8l
bucket 2048 implements a bucket sorted algorithm with a bucket size @B20ords.
OpenMP uses the same fine-grained algorithm as the CAF versionsgedi a private
substitution table and performs first-touch initializatiof the global table to improve
memory locality.

The best representations for fine-grain co-array accessedbe Cray pointer and
the vector of Fortran 90 pointers. The other representstimhich require a function
call for each fine-grain access, yield inferior performaridee MPI bucket 2048 row
is presented for reference and shows that an algorithm weitteblocality properties
and coarser-grain communication clearly achieves bettdopnance. It is worth men-
tioning that the bucketed MPI implementation is much hatderode compared to a
CAF version. The OpenMP version of the benchmark performesdisas the best CAF
version, due to similar fine-grained access patterns.

4.3 Spark98

To evaluate the performance of more realistic fine-graitiegiions, we selected CMU’s
Spark98 [6] benchmark. This benchmark computes a sparsexaattor product of a
symmetric matrix stored in compressed sparse row formatjsaavailable in several
versions: a sequential version, a highly tuned shared-metinieaded version (denoted
ashybrid in [6]) and an MPI version. The original versions are writterC, we trans-
lated their computational kernels into Fortran 90 and @etia CAF version from the
original MPI version.

All parallel versions of Spark98 use a sophisticated datétipaing which has
been computed offline, to improve load balance between psocs. The core of the
benchmark computes a partial sparse matrix-vector prddoally and then assembles
the result across processors.

Our experimental results were collected on an Altix 3000 am&G| Origin 2000.
On the Altix 3000 architecture, we considered two diffeq@atements of a parallel job
to the processors. Thengle placement corresponds to running one process per dual-
processor node; in thdual placement two processes are run on both CPUs of a node,
sharing the local memory bandwidth. To eliminate variagioriocal performance intro-
duced by the backend Fortran or C compilers, the CAF and MPBliates use Fortran
kernels for the local computation and result assembly. Tiheatded shared-memory
version uses the original C kernels.

We evaluate three different CAF alternatives: the first (Q#deked PUTS) uses
manual data packing arfUTs for communication, the second (CAF packed GETSs)
uses manual data packing a@dTs for communication, the third version (CAF GETS)
uses the Fortran 90 array section vector subscript notitiaocess remote data in place
through a Cray pointer (during the assembly phase), butibtistion is not currently
handled automatically by our CAF compiler. We consider tieltversion to be written
in a more natural style for CAF programs.

Figure 7 shows results for the Spark98 benchmark for theéaresslescribed pre-
viously fordual placement executions on the Altix 3000; similar resultsenavserved
for asingle placement. The CAF and MPI versions have similar perforradmica small
number of processors (8-16). On the Altix 3000, for largembers of processors, the
CAF versions outperform the MPI implementation. We obséreat the time spent
for the result assembly stage is 2.5 times higher on 32 psocgsnd 5 times higher
on 64 processors. While we do not know the implementatioaildeatf the proprietary
MPI library, it appears that the single copy ARMCI data tfensare more efficient. In
the hybrid version, a single thread allocates all data &iras, thus reducing memory
locality for the other threads resulting in poor load bakand non-scalable perfor-

_12 : : X
©» -8 - CAF packed PUTs o \
ollr —e— CAF packed GETs || 20.9Ys]
4 1% -v- CAF GETs 8
S MPI go0.8f B
50.9F< Hybrid s
Sogl v Nl 5o N
@ B === - @ \
gl L = - 20.6F \ B
207 £ \
E] S \
Z06f 205 \ 4
= E 2\
2057 204 N
@ L 2 A
:%0'4 803 N
- 0.3F g -® - CAF packed PUTs X
z 30.2(] —— CAF packed GETs p
502F 5 -w - CAF GETs
Soal So.1f MPI
i} i} Hybrid
0 i 0 0 : i i
1 2 4 32 64 1 2 4 8 16
Number of Processors Number of Processors
(a) Altix 3000 (b) Origin 2000

Fig. 7. Comparison of parallel efficiencies (per iteration) for 888 (sf2 trace) for CAF, MPI
and hybrid versions on an SGI Altix 3000 and an SGI Origin 2000

mance. The CAF GETs version suffers up to a 13% performanaltyefor the Altix
3000 and up to a 9% penalty on the Origin 2000 compared to #iedaCAF version
(packed PUTSs). This shows that this more natural programstiyle only has a small
abstraction overhead.

4.4 NAS MG and SP

To evaluate our code generation strategy for hardware dhasmory platforms for
codes with coarse-grain communication, we selected twehrearks, MG and SP,
from the NAS Parallel Benchmarks [7, 16], widely used forleating parallel systems.

We compare four versions of the benchmarks: the standarMPI3mplementa-
tion, two compiler-generated CAF versions based on the 2tBllition CAF-cluster,
which uses the Fortran 90 pointer co-array representationttee ARMCI functions
that rely on an architecture-optimized memory copy subnewtupplied by the vendor
to perform data movement, al@AF-shm, which uses the Fortran 90 pointer co-array
representation, but uses Fortran 90 pointers to accessdeeata, as well as the official
3.0 OpenMP [16] versions of SP and MG. The OpenMP version oin8rporates
structural changes made to the 3.0 serial version to impcaehe performance on
uniprocessor machines, such as fusing loops and reduanstdhnage size for tempo-
raries; it also uses a 1D strategy for partitioning compomathat is better suited for
OpenMP.

In the CAF versions, all data transfers are coarse-graimoanication arising from
co-array section assignments. We rely on the back-enddfo®® compiler to scalar-
ize the transformed copies efficiently. Sequential perforoe measurements used as a
baseline were performed using the NPB 2.3-serial release.

For each benchmark, we present the parallel efficiency d¥ifhie CAF and OpenMP
implementations. On an Altix, we evaluate these benchmarks for bothsthgle and

® For each parallel versiop, the efficiency metric is computed % In this equationt
is the execution time of the original sequential versi@is the number of processors; (P, p)
is the time for the parallel execution #hprocessors using parallelizatipn Perfect speedup
would yield efficiency 1.0 for each processor configuration.

I

[
T

BB

o
00

......

-

o
@

o
3

S o 9o k
N0 o kN W N
7 T

o
Py
/(Number of processors)

=3
o

IS
=

n -& CAF-cluster, Altix 3000 single © 0,54 -& CAF-cluster, Altix 3000 single
-6 CAF-shm, Altix 3000 single -6 CAF-shm, Altix 3000 single
=% MPI Altix 3000 single o 0041 =% MPI Altix 3000 single
OpenMP Altix 3000 single 'U>'~0_3 u OpenMP Altix 3000 single

r —=— CAF-cluster, Altix 3000 dual . F | c —a— CAF-cluster, Altix 3000 dual

o
w

o
N

Efficiency: Speedup/(Number of processors)

—e~ CAF-shm, Altix 3000 dual 20.2] —e~ CAF-shm, Altix 3000 dual
0.1 == MPI Altix 3000 dual 1 £ o0.1}{ ¥ MPI Altix 3000 dual
—— OpenMP Altix 3000 dual pin} —=— OpenMP Altix 3000 dual
0 : i I 0 : : i
1 4 9 16 25 36 49 64 1 2 4 32 64
Number of Processors Number of Processors
(a) NAS SP (b) NAS MG

Fig. 8. Comparison of parallel efficiencies for NAS SP and NAS MG fdPIMCAF with general
communication and CAF with shared memory communicationwelsas OpenMP versions on
an SGI Altix 3000.

dual processor configurations (see Section 4.3). The experaheggults for problem
size class C are shown on the figure 8. For SP, both CAF versichigve similar
performance—comparable to the standard MPI version. For M&CAF-cluster ver-
sion performs better than the CAF-shm version. Since botsiames use coarse-grain
communication, the performance difference shows thattti@tacture-tuned memory
copy subroutine performs better than the compiler scadrdata copy; it effectively
hides the interconnect latency by keeping the optimal nurobenemory operations
in flight. The CAF cluster version outperforms the MPI versfor both the single and
dual configurations. The results for the OpenMP versionsatalirectly comparable
since they are based on the 3.0 source base, but they are kmbenvell designed and
tuned for OpenMP execution. The OpenMP performance is gooa $mall number of
processors (up to 8-9) but then tails off compared to the MBI@AF versions.

5 Conclusions

We investigated several implementation strategies fociefftly representing, access-
ing and communicating distributed data in Fortran 90 sonotie generated by a CAF
compiler for scalable shared memory systems. Generatieggfiain communication
that uses direct loads and stores for the STREAM benchmapkowed the perfor-
mance by a factor of 24 on the Altix and a factor of five on theg®riWe found that
for benchmarks requiring fine-grain communication, suciRasdom Access, a tai-
lored code generation strategy that takes into accounttacthre and back-end com-
piler characteristics, provides better performance. Intrest, benchmarks requiring
only coarse-grain communication deliver better perforoggny using an architecture’s
tunednmenctpy routine for bulk data movement. Our current library-basedecgen-
eration already enables us to achieve performance compdoabr better than that of
hand-tuned MPI for benchmarks such as SP and MG, which useesgaain commu-
nication. The Spark98 experiments showed that programmiagatural CAF style by
using remote data in place incurs an acceptable performataty compared to the
fastest CAF version, which manages buffers explicitly.

Based on our study, we plan to develop suport for automaticeshmemory code
generation using the COMMON block representation for lazabrray accesses and
using a pointer-based representation for remote accessamjunction with pointer
initialization hoisting. We will add support for automatiecognition of contiguous
remote data transfers and implement them using calls tongd system primitives.
These strategies will enabteaf ¢ to generate code with high performance for both
local and remote accesses on scalable shared-memory system

Acknowledgments
We thank J. Nieplocha and V. Tipparaju for their collabaratbn ARMCI. We thank F.
Zhao for her work on the compiler and K. Feind for his insigsiheut the Altix.

References

1. Numrich, R.W., Reid, J.K.: Co-Array Fortran for parafpebgramming. ACM Fortran Forum
17(1998) 1-31

2. Silicon Graphics, Inc.: The SGI Altix 3000 Global Shafdémory Architecture.ht t p:

/1 ww. sgi . conml servers/altix/whitepapers/tech_papers. htm (2004)

3. Laudon, J., Lenoski, D.: The SGI Origin: a ccNUMA highhakable server. In: Proceedings
of the 24th Intl. Symposium on Computer Architecture, ACN$ (1997) 241-251

4. McCalpin, J.D.: Sustainable Memory Bandwidth in Currdigh Performance Computers.
Silicon Graphics, Inc., MountainView, CA. (1995)

5. HPC Challenge Developers: HPC Challenge Benchniatrk.p: / /i cl . cs. ut k. edu/
pr oj ect sdev/ hpcc (2003)

6. O’Hallaron, D.R.: Spark98: Sparse matrix kernels foretlanemory and message passing
systems. Technical Report CMU-CS-97-178, School of Compbitience, Carnegie Mellon
University (1997)

7. Bailey, D., Harris, T., Saphir, W., van der Wijngaart, ®Rigo, A., Yarrow, M.: The NAS par-
allel benchmarks 2.0. Technical Report NAS-95-020, NASAesrResearch Center (1995)

8. Snir, M., Otto, S.W., Huss-Lederman, S., Walker, D.W.nBarra, J.: MPI: The Complete
Reference. MIT Press (1995)

9. Dagum, L., Menon, R.: OpenMP: An Industry-Standard ARIShared-Memory Program-
ming. IEEE Comput. Sci. End (1998) 46-55

10. Silicon Graphics, Inc.: MPT Programmer’s Guide, mpi rpages, intraishmem man pages.
http://techpubs. sgi . com(2002)

11. Nieplocha, J., Carpenter, B. In: ARMCI: A Portable Reenbtemory Copy Library for
Distributed Array Libraries and Compiler Run-Time Systeladume 1586 of Lecture Notes
in Computer Science. Springer-Verlag (1999) 533-546

12. Coarfa, C., Dotsenko, Y., Eckhardt, J., Mellor-Crumpiey Co-array Fortran Performance
and Potential: An NPB Experimental Study. Number 2958 in IS\\Springer-Verlag (2003)

13. Dotsenko, Y., Coarfa, C., Mellor-Crummey, J.: A Muligform Co-Array Fortran Com-
piler. In: Proceedings of the 13th Intl. Conference of Rat&lrchitectures and Compilation
Techniques, Antibes Juan-les-Pins, France (2004)

14. Adams, J.C., Brainerd, W.S., Martin, J.T., Smith, BWagener, J.L.: Fortran 90 Handbook:
Complete ANSI/ISO Reference. McGraw Hill (1992)

15. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, Phe SPLASH-2 programs: Char-
acterization and methodological considerations. In: 8edings of the 22th International
Symposium on Computer Architecture, Santa Margheritaeglialy (1995) 24—36

16. Jin, H., Frumkin, M., Yan, J.: The OpenMP implementatidrNAS parallel benchmarks
and its performance. Technical Report NAS-99-011, NASA AmResearch Center (1999)

