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Abstract

As part of the recent focus on increasing the productivity of parallel application developers, Co-array Fortran

(CAF) has emerged as an appealing alternative to the Message Passing Interface (MPI). CAF belongs to the family of

global address space parallel programming languages; such languages provide the abstraction of globally addressable

memory accessed using one-sided communication. At Rice University we are developing cafc, an open source,

multiplatform CAF compiler. Our earlier studies show that cafc-compiled CAF programs achieve similar perfor-

mance to that of corresponding MPI codes for the NAS Parallel Benchmarks. In this paper, we present a study of

several CAF implementations of Sweep3D on four modern architectures. We analyze the impact of using one-sided

communication in Sweep3D, identify potential sources of inefficiencies and suggest ways to address them. Our re-

sults show that we achieve comparable performance to that of the MPI version on three cluster-based architectures

and outperform it by up to 10% on the SGI Altix 3000.

1 Introduction

Parallel computing is a vital technology for complex scientific simulations, however, achieving high performance

with parallel programs is difficult. High performance parallel programs depend on the synergy of good programming

models, effective optimizing compilers and capable hardware platforms. For a parallel programming model to be
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appealing, it has to meet three major goals: programs should be easy to write, it should be expressive and it should

enable transparent performance portability. Ideally, a developer would write a parallel program once and then a parallel

compiler would tailor the code to achieve high-performance on the parallel platform of choice.

Today, the de facto standard of parallel programming is the Message Passing Interface (MPI) [GSNL98]. It pro-

vides a standard for two-sided communication and is available on almost every parallel platform. Developers have

found that it is difficult and error-prone to write parallel programs using the MPI model. Due to the explicit nature

of MPI communication, MPI programs are not well-suited to compiler-based improvement, which leaves the end user

solely responsible for choreographing the communication and computation to achieve high performance.

Recently, there has been a significant interest in trying to improve the productivity of parallel programmers by

using language-based parallel programming models that abstract away most of the complex details of library-based

high-performance communication. Experience with early HPF compilers has shown that in the absence of very ca-

pable parallelizing compilers, it is crucial to provide programmers with sufficient control to enable them to employ

sophisticated parallelizations by hand. The family of global address space languages, including Co-array Fortran

(CAF) [NR98a, NR98b] and Unified Parallel C (UPC) [CDC+99], has attracted interest as promising a near-term

alternative to MPI. Both CAF and UPC employ the single-program-multiple-data (SPMD) model for parallel pro-

gramming and are simple extensions to widely-used languages, Fortran 95 and C respectively. The global address

space abstraction of these languages naturally supports a one-sided communication style. With communication and

synchronization as part of the language, programs written in these languages are more amenable to compiler-directed

communication optimization than MPI programs.

At Rice University we are developing cafc—a portable, open-source compiler for Co-array Fortran that per-

forms source-to-source translation of CAF codes into Fortran 95 code augmented with calls to the ARMCI [NC99]

communication library. Previous studies [CDEMC03, DCMC04, DCMCC04] show that even without sophisticated

automatic communication optimization, our CAF compiler enables us to achieve performance comparable to that of

hand optimized MPI applications for CAF versions of the well-known NAS benchmarks [BHS+95].

In this paper we describe our experiences developing Sweep3D [Acc95] implementations in CAF, compare their

performance with that of LANL’s original MPI version and analyze the performance differences between these codes

on several platforms. Our CAF versions of Sweep3D use one-sided communication. While the CAF model eliminates

the need for managing messaging in the program, it leaves users responsible for managing memory for communicated

data. We first wrote a CAF version that closely follows the structure of the LANL’s original MPI code. Because shared

arrays are updated in place, this version is very synchronous. Next, we built a CAF version that adds a measure of

asynchrony tolerance by using multi-version storage for communicated arrays; this enables communication to overlap
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with computation. We built a third CAF version to help us understand the differences in performance between the two

prior versions and MPI. To gain deeper insight into the performance differences, we implemented a microbenchmark

which mimics the one-sided communication pattern encountered in Sweep3D.

Our results show that for Sweep3D, our best CAF version achieves scalability comparable to the MPI version on

cluster architectures and outperforms it by up to 10% on the SGI Altix 3000, a hardware distributed shared-memory

platform. For cluster-based architectures we identified three major sources of inefficiency. The first is overhead

introduced by our CAF runtime library and cafc’s source-to-source translation. The second is that for Sweep3D’s

communication pattern, ARMCI delivers lower communication performance than MPI for small transfers. The third

is that ARMCI’s support for non-blocking communication should be refined to enable efficient combination with

unidirectional notifications for common communication patterns, such as those found in Sweep3D. On SGI Altix

3000 the CAF versions of Sweep3D outperform the original MPI version by performing direct data movement without

any intermediate copies; the MPI version performs more data movement, copying data to and from communication

buffers.

In the next section, we give a brief overview of the CAF programming model and communication libraries for

one- and two-sided communication. In section 3 we describe key implementation decisions for our CAF compiler. We

describe the blocking communication microbenchmarks and the CAF and MPI versions of Sweep3D in section 4. In

section 5 we present and analyze our performance results for Sweep3D. Section 6 summarizes our conclusions.

2 Background

Here, we briefly describe the CAF programming model, along with extensions we developed to facilitate portable high-

performance. We then describe one-sided and two-sided communication libraries and their implications for parallel

application development.

2.1 Co-Array Fortran and Extensions

Co-array Fortran supports SPMD parallel programming through a small set of language extensions to Fortran 95. An

executing CAF program consists of a static collection of asynchronous process images. Similar to MPI, CAF programs

explicitly manage data locality and computation distribution. However, CAF belongs to the family of Global Address

Space programming languages and provides the abstraction of globally accessible memory both for cluster-based and

for shared memory architectures.

CAF supports distributed data using a natural extension to Fortran 95 syntax. For example, the declaration
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integer :: a(n,m)[*] declares a shared co-array a with n × m integers local to each process image. The

dimensions inside brackets are called co-dimensions. Co-arrays may also be declared for user-defined types as well

as primitive types. A local section of a co-array may be a singleton instance of a type rather than an array of type

instances.

Instead of explicitly coding message exchanges to access data belonging to other processes, a CAF program can di-

rectly reference non-local values using an extension to Fortran 95 syntax for subscripted references. For instance, pro-

cess p can read the first column of co-array a from process p+1with the right-hand side reference to a(:,1)[p+1].

CAF has several synchronization primitives. sync all implements a synchronous barrier; sync team, is used

for barrier-style synchronization among dynamically-formed teams of two or more processes; and sync memory

implements a local memory fence and ensures the consistency of the process image memory by completion of all

outstanding communication requests issued by this image.

Since both remote data access and synchronization are language primitives in CAF, communication and synchro-

nization are amenable to compiler-based optimization. In contrast, communication in MPI programs is expressed in

a more detailed form, which makes it much harder to transform with a compiler. CAF also contains several features

that improve the expressiveness and power of the language including dynamic allocation of co-arrays, co-arrays of

user-defined types containing pointers, and fledgling support for parallel I/O. A more complete description of the CAF

language can be found in [NR98b]

Our previous studies [CDEMC03, DCMC04] identified a few weaknesses of the original CAF language specifica-

tion that reduce the performance of CAF codes and proposed extensions to CAF to avoid these sources of performance

degradation. First, the original CAF specification requires programs to have implicit memory fences before and after

each procedure call to ensure that the state of memory is consistent before and after each procedure invocation. This

guarantees that each array accessed within a subroutine is in consistent state upon entry and exit from the subroutine.

In many cases, an invoked procedure does not access co-array data at all or accesses only co-array data that does

not overlap with co-array data accessed by the caller. As a consequence, it is not possible to overlap communica-

tion with a procedure’s computation with memory fences around the procedure’s call sites. Second, CAF’s original

team-based synchronization required using collective synchronization even in cases when it is not necessary or may

complicate the coding, e.g., when using multipartitioning [Van93] data distribution. In [CDEMC03], we propose

augmenting CAF with unidirectional, point-to-point synchronization primitives: sync notify and sync wait.

sync notify(q) sends a notify to process image q; this notification is guaranteed to be seen by image q only

after all communication events previously issued by the notifier to image q have been completed. sync wait(p)

blocks its caller until it receives a matching notification message from the process image p. Communication events for
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CAF remote data accesses are blocking. While it is possible to exploit non-blocking communication in some cases,

automatically replacing blocking communication with its non-blocking counterpart and overlapping communication

with computation requires sophisticated compiler analysis. To enable savvy application developers to overlap commu-

nication and computation in cases where compiler analysis cannot do so automatically, it is useful for CAF to provide

a user-level mechanism for exploiting non-blocking communication. To address that, we have proposed a small set of

primitives that enable application developers to delay the completion of communication events [DCMC04].

2.2 Communication Libraries

MPI uses a two-sided (send and receive) communication model to communicate data between processes. With two-

sided communication, both the sender and receiver explicitly participate in a communication event. As a consequence,

both sender and receiver temporarily set aside their computation to communicate data. Having two processes complete

a point-to-point communication explicitly synchronizes the sender and receiver.

CAF uses one-sided communication (PUT and GET) to access remote data. When using one-sided communication,

one side specifies both source and destination of communicated data. From the programmer’s perspective, the other

image is not aware of the communication. Thus, the one-sided model cleanly separates data movement from syn-

chronization; this can be particularly useful for simplifying the coding of irregular applications. On loosely-coupled

architectures, a one-sided communication library can take advantage of Remote Direct Memory Access (RDMA) ca-

pabilities of modern networks, such as Myrinet [ANS98] and Quadrics [PcFH+02]. During an RDMA data transfer,

the Network Interface Chip (NIC) controls the data movement without interrupting the remote host Central Processing

Unit (CPU). This enables the CPU to compute while communication is in progress. On all microprocessor-based

architectures, a cache coherency protocol is used to maintain consistency between CPU caches and memory that is

the source or sink of communication. On shared memory platforms such as Altix 3000, one-sided communication

is performed by the CPU using load/store instructions on globally addressable shared memory. The hardware uses

directory-based cache coherence to provide fast data movement and to maintain consistency between CPU caches and

(local or remote) shared memory. As our recent study [DCMCC04] demonstrated, on shared-memory architectures

fine-grain one-sided communication is fastest with compiler generated load/store instructions, while large contiguous

transfers are faster when transmitted using a memcpy library function optimized for the target platform.

The cafc compiler uses the Aggregate Remote Memory Copy Interface (ARMCI) [NC99]—a multi-platform

library for high-performance one-sided communication—as its implementation substrate for global address space

communication. ARMCI provides both blocking and split-phase non-blocking primitives for one-sided data movement

as well as primitives for efficient unidirectional synchronization. On some platforms, using split-phase primitives
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enables communication to be overlapped with computation. ARMCI provides an excellent implementation substrate

for global address space languages making use of coarse-grain communication because it achieves high performance

on a variety of networks (including Myrinet, Quadrics, and IBM’s switch fabric for its SP systems) as well as shared

memory platforms (Cray X1, SGI Altix3000, SGI Origin2000) while insulating its clients from platform-specific

implementation issues such as shared memory, threads, and DMA engines. A notable feature of ARMCI is its support

for non-contiguous data transfers [NTSP02].

3 The cafc Compiler for Co-Array Fortran

We designed the cafc compiler for Co-array Fortran with the major goals of being portable and delivering high-

performance on a multitude of platforms. Ideally, a programmer writes a CAF program once in a natural style and

cafc would adapt it for high performance on the target platform of choice.

To achieve this goal, cafc performs source-to-source transformation of CAF code into Fortran 95 code augmented

with communication operations. By employing source-to-source translation, cafc aims to leverage the best back-end

compiler available on the target platform to optimize local computation. For communication,cafc typically generates

calls to ARMCI’s one-sided communication primitives; however, for shared memory systems it also can generate code

that uses load and store operations for communication. cafc is based on OPEN64/SL [Ope02], a version of the

OPEN64 [Ope01] compiler infrastructure that we modified to support source-to-source transformation of Fortran 95

and CAF.

To support efficient access to remote co-array data on the broadest range of platforms, memory for co-arrays must

be managed by the communication substrate; typically, this memory is managed separately from memory managed

conventionally by a Fortran 95 compiler’s runtime system. Currently, co-array memory is allocated and managed by

the ARMCI library. On cluster systems with RDMA capabilities, co-arrays are allocated in memory that is registered

and pinned, which enables data transfers to be performed directly using the DMA engine of the NIC.

For CAF programs to perform well, access to local co-array data must be efficient. Since co-arrays are not

supported in Fortran 95, we need to translate references to the local portion of a co-array into valid Fortran 95

syntax. For performance, our generated code must be amenable to back-end compiler optimization. In an earlier

study [DCMCC04], we explore several alternative representations for co-arrays. Our current strategy is to use a For-

tran 95 pointer to access local co-array data. Since co-array data is allocated outside the Fortran 95 runtime system,

we need the ability to initialize and manipulate compiler-dependent Fortran 95 array descriptors (dope vectors) on

a variety of target platforms. We use the CHASM library [RSB03] from Los Alamos National Laboratory for this
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purpose.

Communication events expressed with CAF’s bracket notation must be converted into Fortran 95; however, this

is not straightforward because the remote memory may be in a different address space. Although the CAF language

provides shared-memory semantics, the target architecture may not; a CAF compiler must perform transformations

to bridge this gap. On a hardware shared memory platform, the transformation is relatively straightforward since

references to remote memory in CAF can be expressed as loads and stores to shared locations; the study [DCMCC04]

contains a detailed exploration of the alternatives for performing communication on hardware shared memory systems.

The situation is more complicated for cluster-based systems with distributed memory.

To perform data movement on clusters, cafc must generate calls to a communication library to access data on

a remote node. Moreover, cafc must manage storage to temporarily hold remote data needed for a computation.

For example, in the case of a read reference of a co-array on another image, arr(:)=coarr(:)[p] + ..., a

temporary, temp, is allocated just prior to the statement to hold the value of the coarr(:) array section from image

p. Then, a call to get data from image p is issued to the runtime library. The statement is rewritten as arr(:) =

temp(:) + .... The temporary is deallocated immediately after the statement. For a write to a remote image,

such as coarr(:)[p1,p2]=..., a temporary temp is allocated prior to the remote write statement; the result

of the evaluation of the right-hand side is stored in the temporary; a call to a communication library is issued to

perform the write; and finally, the temporary is deallocated. When possible, the generated code avoids using unneeded

temporary buffers. For example, for an assignment performing a co-array to co-array copy, cafc generates code

to move the data directly from the source into the destination. In general, cafc generates blocking communication

operations. However, user directives [DCMC04] enable cafc to exploit non-blocking communication.

To support point-to-point synchronization in CAF (sync notify and sync wait), we collaborated with the

developers of ARMCI on the design of suitable armci notify and armci wait primitives. ARMCI ensures that

if a blocking or non-blocking PUT to a remote process image is followed by a notify to the same process image,

then the destination image receives the notification after the PUT operation has completed. While ARMCI supports

non-blocking communication, on some architectures, the implementation of armci notify itself is blocking. This

limits the overlap of communication and computation if a CAF programmer writes a non-blocking write to a remote

co-array and notifies the destination process image immediately thereafter. To maximize the overlap of communication

and computation, sync notify should have a non-blocking implementation as well. We are actively collaborating

with the ARMCI developers regarding non-blocking notifications.

cafc is available as open-source. It supports COMMON, SAVE, and ALLOCATABLE co-arrays of primitive

and user-defined types, passing of co-array arguments, co-arrays with multiple co-dimensions, co-array communica-
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tion using array sections, the CAF synchronization primitives and most of the CAF intrinsic functions. The following

features of CAF are currently not supported: allocatable co-array components, triplets in co-dimensions, and parallel

I/O. Ongoing work is aimed at removing these limitations. cafc compiles natively and runs on the following archi-

tectures: Pentium clusters with Ethernet interconnect, Itanium2 clusters with Myrinet or Quadrics interconnect, Alpha

clusters with Quadrics interconnect, SGI Origin 2000 and SGI Altix 3000.

Previous studies [CDEMC03, DCMC04, DCMCC04] have shown that even without automatic communication

optimizations we are able to obtain performance and scalability comparable to that of hand-coded MPI applications

for the NAS benchmarks on a range of cluster and hardware shared-memory systems.

4 Comparing One-sided and Two-sided Communication

The goal of our study is to experiment and compare one-sided and two-sided communication schemes for a code with

a sophisticated parallelization. For this purpose, we selected the ASCI Sweep3D [Acc95] application.

4.1 Sweep3D

Sweep3D solves a one-group time-independent discrete ordinates (Sn) 3D Cartesian (XYZ) geometry neutron trans-

port problem. The XYZ geometry is represented by an IJK logically rectangular grid of cells. The angular dependence

is handled by discrete angles with a spherical harmonics treatment for the scattering source. The solution involves two

steps: the streaming operator is solved by sweeps for each angle and the scattering operator is solved iteratively.

Sweep3D exploits wavefront parallelism. It uses a 2D spatial domain decomposition onto a 2D processor array

in the I- and J-directions. For efficient parallelization, Sweep3D is coded to pipeline blocks of MK k-planes and

MMI angles through this 2D processor array. Thus, the wavefront exploits parallelism in both I- and J-directions

simultaneously. A more complete description of Sweep3D can be found elsewhere [Acc95]. Figure 1 shows a piece

of pseudocode representing a high-level view of the Sweep3D kernel.

To investigate the impact of different CAF coding styles, we implemented three CAF versions of the Sweep3D:

Sweep3D-CAF, Sweep3D-CAF-pa, and Sweep3D-CAF-mb. We compared their performance to that of the MPI

version. The difference among the CAF versions is in the communication implementation, while the local computation

is similar.

Sweep3D-CAF was developed from the original MPI code by declaring its Phiib and Phijb arrays as co-arrays

and using blocking PUT to communicate them “in-place”. For the I-direction communication, the code is presented

in Figure 2. For the J-direction communication, the code is similar except that the process image communicates the

8



do iq=1,8 ! octants
do mo = 1, mmo ! angle pipelining loop
do kk = 1, kb ! k-plane pipelining loop

recv e/w into Phiib ! recv block I-inflows
recv n/s into Phijb ! recv block J-inflows

...
! intense computation with use/update Phiib and Phijb
...

send e/w Phiib ! send block I-outflows
send n/s Phijb ! send block J-outflows

enddo
enddo

enddo

Figure 1: Sweep3D kernel pseudocode.

Phijb array with its J-predecessor and with its J-successor.
...
if (receiving from I-predecesor) then

! notify the I-pred that the local Phiib buffer is ready to accept new data
call sync notify(I-pred)
! wait for the new data to arrive from the I-predecessor
call sync wait(I-pred)

endif

...
! intense computation with use/update Phiib and Phijb
...

if (sending to I-successor) then
! wait for the I-succ notification that its Phiib is ready to accept new data
call sync wait(I-succ)
! transfer the data to the I-successor (contiguous blocking PUT)
Phiib(:,:,:)[I-succ] = Phiib(:,:,:)
! notify the I-succ that the new data has been sent
call sync notify(I-succ)

endif
...

Figure 2: Sweep3D-CAF kernel pseudocode.

The Sweep3D-CAF communication is very similar to that of the MPI version. The data movement statement — as-

signment to Phiib — communicates the same data as the send/recv pair of the MPI version. The sync notify

and sync wait provide synchronization analogous to that induced by an MPI send/recv pair. For Sweep3D-

CAF, there is no data copy from Phiib or Phijb into an auxiliary communication buffer; the data is communicated

directly “in-place”. In contrast, the MPI version might use extra data copies to/from a communication buffer to move

the data.

Sweep3D-CAF-pa is similar to the Sweep3D-CAF version but Phiib and Phijb arrays are not communicated

“in-place”. First, they are copied into auxiliary co-arrays on the source; then, the auxiliary co-arrays are communicated

using a blocking PUT to the destination; finally, at the destination, the communicated data is copied from the auxiliary

co-arrays into the Phiib and Phijb. The synchronization remains the same. In essence, this version simulates
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possible data copies that the MPI version might execute.

Sweep3D-CAF-mb aims to overlap PUTs with computation on the successor and to provide asynchrony tolerance.

It uses additional storage, namely, three instances of Phiib and Phijb to overlap communication with computation.

In the wavefront steady state, one instance of Phiib can be used to receive the data from the I-predecessor; at the

same time another instance can be used to perform the local computation, while the third instance can be used to

communicate the data to the I-successor (three-buffer scheme). For shared-memory architectures without hardware

support for asynchronous data transfers, a two-buffer scheme, in which one buffer is used for local computation and the

other is used for a PUT performed by a predecessor, is likely to yield the best performance. Phiib has an extra high-

order dimension to manage the instances in the circular-buffer fashion to avoid unnecessary copies. Similarly, three

instances of Phijb can be used to provide for communication and computation overlap for the wavefront parallelism

in the J-direction. The simplified pseudocode for three-buffer scheme is given in Figure 3. Note that more buffers

can be used. Our implementation is general and supports an arbitrary number of buffers holding incoming data from

the predecessor and outgoing data to the successor. On the platforms where non-blocking PUTs and notifications are

supported, the code uses non-blocking communication directives proposed in [DCMC04] to overlap communication

with local computation, otherwise only blocking PUTs are used.
...
advance the phiib wrk idx index (index rotation to avoid extra memory copies)
if (receiving from I-predecesor) then

! wait for the data from the I-predecessor
call sync wait(I-pred)
! notify the I-predecessor that we have a buffer available to receive new data
call sync notify(I-pred)

endif

...
! heavy computation with use/update Phiib and Phijb
...

if (sending to I-successor) then
finalize locally the previous non-blocking PUT to the I-succ

start the region of non-blocking communication with index phiib wrk idx
! transmit the new data to the I-succ using non-blocking contiguous PUT (due to

decomposition symmetry, phiib wrk idx has the same value locally and on the I-succ)
Phiib(:,:,:,phiib wrk idx)[I-succ] = Phiib(:,:,:,phiib wrk idx)
! notify the I-successor that more data is available
call sync notify(I-succ)
stop the region of non-blocking communication with index phiib wrk idx

endif
...

Figure 3: Sweep3D-CAF-mb kernel pseudocode.

4.2 Blocking Communication Throughput Microbenchmark

To explain some of the Sweep3D performance results we also created a microbenchmark that measures blocking

communication throughput.
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Data movement is an important component of parallel applications and often a key factor in application perfor-

mance. To evaluate the capabilities of CAF programs for blocking communication we have devised a producer-

consumer microbenchmark and evaluated several versions: MPI, CAF and ARMCI. Such a benchmark enables us

to evaluate the performance of the communication library used for blocking communication on a particular target

platform.

The core of the MPI version is presented in figures 4 (a) and (b). In the microbechmark process img1, the

sender (figure 4(a)), communicates SIZE double precision numbers to process img2, the receiver (figure 4(b)). The

MPI blocking communication calls, MPI send and MPI recv, provide both data movement and synchronization

between the sender and the receiver. The communication event is performed NRUNS times; to overcome limitations in

the system clock precision, the value we chose for NRUNS was 500000. We measure throughput by dividing the total

size of the data sent to the execution time and is measured in MB/second:

throughput = SIZE∗NRUNS∗8∗10e−6
execution time

To compose a CAF version with the same semantics, we explicitly specify data movement and synchronization

separately. The destination process image, img2, must notify the source process image, img1, that the co-array data

to be written is no longer being used by computation and is, thus, available to be overwritten. After the PUT, the

source process image uses sync notify to signal the destination that the data has arrived. Issuing PUTs without

the synchronization is, in general, not realistic and would result in race conditions. The code for the source and the

destination processes is presented in figures 4 (c) and (d).

Finally, we have written a version of the blocking PUT microbenchmark using ARMCI calls directly, to evaluate

the overhead introduced by the CAF runtime layer for communication events. The code for the ARMCI version is

similar to the CAF code and is shown in figures 4 (e) and (f).

5 Experiments

We evaluated the performance of our CAF and MPI variants of Sweep3D on four platforms.

The first platform we used was the Alpha cluster at the Pittsburgh Supercomputing Center. Each node is an SMP

with four 1GHz processors and 4GB of memory. The operating system is OSF1 Tru64 v5.1A. The cluster nodes are

connected with Quadrics QSNet (Elan3). The back-end Fortran compiler used was Compaq Fortran V5.5.

The second platform used was a cluster of 2000 HP Long’s Peak dual-CPU workstations at the Pacific Northwest

National Laboratory. The nodes are connected with Quadrics QSNet II (Elan 4). Each node contains two 1.5GHz

Itanium2 processors with 32KB/256KB/6MB L1/L2/L3 cache and 4GB of RAM. The operating system is Red Hat
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double precision a(N1)

.....

do i=1, 500000

call mpi send(a1(1), size,

MPI DOUBLE PRECISION, img2,

99, MPI COMM WORLD, ierr)

end do

(a) Source, MPI

double precision a(N1)

.....

do i=1, 500000

call mpi recv(a1(1), size,

MPI DOUBLE PRECISION, img1,

99, MPI COMM WORLD, ierr)

end do

(b) Destination, MPI
double precision a(N1)[0:*]

.....

do i=1, 500000

call sync wait(img2)

a(1:SIZE)[img2]=a(1:SIZE)

call sync notify(img2)

end do

(c) Source, CAF

double precision a(N1)[0:*]

.....

do i=1, 500000

call sync notify(img1)

call sync wait(img1)

end do

(d) Destination, CAF
double precision addressA(NUM IMAGES)

.....

do i=1, 500000

call armci wait(img2)

call ARMCI put(addressA[img1],

addressA[img2],

SIZE, img2 )

call armci notify(img2)

end do

(e) Source, ARMCI

double precision addressA(NUM IMAGES)

.....

do i=1, 500000

call armci notify(img1)

call armci wait(img1)

end do

(f) Destination, ARMCI

Figure 4: MPI, CAF and ARMCI versions of the blocking PUT microbenchmark.

Linux (kernel version 2.4.20). The back-end compiler is the Intel Fortran compiler version 8.0.

The third platform we used for experiments was a cluster of 92 HP zx6000 workstations interconnected with

Myrinet 2000. Each workstation node contains two 900MHz Intel Itanium 2 processors with 32KB/256KB/1.5MB of

L1/L2/L3 cache, 4-8GB of RAM, and the HP zx1 chipset. Each node is running the Linux operating system (kernel

version 2.4.18-e plus patches). We used the Intel Fortran compiler version 8.0 for Itanium as our Fortran 90 back-end

compiler.

The fourth platform is an SGI Altix 3000, with 128 Itanium2 1.5GHz processors with 6MB L3 cache, and 128 GB

RAM, running the Linux64 OS with the 2.4.21 kernel and the Intel Fortran compiler version 8.0.

For the Sweep3D benchmark, we compare the parallel efficiency of the MPI and CAF versions. We compute

parallel efficiency as follows. For each parallelization ρ, the efficiency metric is computed as ts

P×tp(P,ρ) . In this

equation, ts is the execution time of the sequential version; P is the number of processors; tp(P, ρ) is the time for the

parallel execution on P processors using parallelization ρ. Using this metric, perfect speedup would yield efficiency

of 1.0 for each processor configuration. We use efficiency rather than speedup or execution time as our comparison
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double precision a1(N1)[0:*]

double precision a2(N1)[0:*]

.....

do i=1, 500000/2

call sync wait(img2)

a1(1:SIZE)[img2]=a1(1:SIZE)

call sync notify(img2)

call sync wait(img2)

a2(1:SIZE)[img2]=a2(1:SIZE)

call sync notify(img2)

end do

(a) Source, CAF

double precision a1(N1)[0:*]

double precision a2(N1)[0:*]

.....

call sync notify(img1)

call sync notify(img1)

do i=1, 500000/2

call sync wait(img1)

call sync notify(img1)

call sync wait(img1)

call sync notify(img1)

end do

call sync wait(img1)

call sync wait(img1)

(b) Destination, CAF

Figure 5: CAF version of the two-buffer PUT microbenchmarks.

metric because it enables us to accurately gauge the relative performance of multiple benchmark implementations

across the entire range of processor counts. We present results for sizes 50x50x50, 150x150x150 and 300x300x300,

with the total memory requirements of 16MB, 434MB and 3463MB respectively .

For the blocking PUT microbenchmarks we present the throughput measured in MB/second (106 B/second), for

message sizes ranging from 512B to 128KB, which covers the message sizes encountered in the Sweep3D experiments.

The results for the Alpha cluster with Quadrics interconnect are shown in figures 6, 7 and 8. The results for the

Itanium2 cluster connected with Quadrics are presented in figures 9, 10 and 11. Figures 12, 13 and 14 displays the

results for the Itanium2 cluster with Myrinet 2000 interconnect. Finally, the results on the SGI Altix 3000 machine

are shown in figures 15, 16 and 17. The result for the microbenchmark on the various architecture are presented in

figures 18, 19, 20 and 21.

Our results show that for Sweep3D we achieve a scalability comparable to that of the MPI version on the cluster

architectures and outperform it by up to 10% on the hardware shared-memory machine.

On the Alpha cluster, the Sweep3D-CAF-mb version slightly outperforms the MPI version for the 50x50x50 prob-

lem size, while MPI outperforms Sweep3D-CAF-mb for the 150x150x150 problem size, and they perform comparably

for the 300x300x300 problem size. The Sweep3D-CAF-mb enables better latency tolerance; by using multiple com-

munication buffers, it reduces the wait time of the source process image for a buffer to become available for a PUT

to the destination process image. Currently, the notify is implemented in ARMCI with a blocking PUT. While we

can overlap the PUT to the successor with the PUT from the predecessor (both performed as independent RDMA by

the NIC, as described in section 2.2), we cannot overlap the PUT with computation on the source process image. The

blocking communication microbenchmark shows that the CAF translation doesn’t introduce a significant overhead

13
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Figure 6: Results for Sweep3D size 50x50x50 on an Alpha cluster with a Quadrics Elan3 interconnect.
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Figure 7: Results for Sweep3D size 150x150x150 on an Alpha cluster with a Quadrics Elan3 interconnect.

over the ARMCI library, but the ARMCI library itself yields a lower throughput than the native MPI implementation.

As expected, the one-buffer versions of Sweep3D — Sweep3D-CAF and Sweep3D-CAF-pa — perform worse than the

multiple-buffer version Sweep3D-CAF-mb. Also, Sweep3D-CAF-pa performs expectedly worse than Sweep3D-CAF

because of extra data copies.

On the Itanium2 cluster with Quadrics Elan4 interconnect, MPI slightly outperforms Sweep3D-CAF-pa and

Sweep3D-CAF-mb versions for the problem sizes 50x50x50, and achieves comparable performance for the 150x150x150

and 300x300x300 problem size. A surprising finding was that the Sweep3D-CAF version performs 20-30% worse
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Figure 8: Results for Sweep3D size 300x300x300 on an Alpha cluster with a Quadrics Elan3 interconnect.

compared to the other versions. Our investigation lead to the conclusion that the performance difference is due to

inefficient code generated by the Intel Fortran Compiler. We discovered that the Sweep3D-CAF has 33% more L1 and

L2 instruction cache misses than its MPI counterpart, while experiencing comparable number of data cache misses.

Because Sweep3D employs wave-front parallelism, both local code and communication efficiency are very important

to achieving overall good performance. Our initial suspicion was that the performance difference is due to the Phiib

and Phijb buffers being invalidated in the CPU cache because of the RDMA data transfers. These arrays are used
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Figure 9: Results for Sweep3D size 50x50x50 on an Itanium2 cluster with a Quadrics Elan4 interconnect.
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Figure 10: Results for Sweep3D size 150x150x150 on an Itanium2 cluster with a Quadrics Elan4 interconnect.

1 6 12 24 32 36 48 64 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Number of Processors

Ef
fic

ie
nc

y:
 S

pe
ed

up
/(N

um
be

r o
f p

ro
ce

ss
or

s)

MPI Itanium2+Quadrics       
CAF Itanium2+Quadrics       
CAF−fix Itanium2+Quadrics   
CAF−pa Itanium2+Quadrics    
CAF−mb Itanium2+Quadrics    
CAF−mb−fix Itanium2+Quadrics

Figure 11: Results for Sweep3D size 300x300x300 on an Itanium2 cluster with a Quadrics Elan4 interconnect.

in the local computation extensively, so we inserted loop nests that access the Phiib and Phijb in the code right

after the data is communicated, thus warming up the cache. That change fixed the performance problem. However,

moving the loop nest in a separate procedure and passing Phiib and Phijb as parameters again lead to performance

degradation. Inserting loop nests that access a small temporary array, not used in the computation, again improved the

performance. At this point, we measured the instruction and data cache misses and saw that the performance degrada-

tion was caused by the extra instruction cache misses. This explains counterintuitive results for the Sweep3D-CAF-pa

version that performs extra data copying while achieving better performance than the Sweep3D-CAF version. We plan
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Figure 12: Results for Sweep3D size 50x50x50 on an Itanium2 cluster with a Myrinet 2000 interconnect.
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Figure 13: Results for Sweep3D size 150x150x150 on an Itanium2 cluster with a Myrinet 2000 interconnect.

to contact Intel to investigate this unintuitive behavior of code generated by their Fortran compiler. The Sweep3D-

CAF-fix version is derived from Sweep3D-CAF by adding the “fix-up” code; similarly, the Sweep3D-CAF-mb-fix

is derived from the Sweep3D-CAF-mb version. The Sweep3D-CAF-mb-fix version achieves performance compara-

ble to that of the MPI version for the 50x50x50 problem size, and outperforms it by up 9% to for the 150x150x150

and 300x300x300 problem size. By analyzing the microbenchmark results, we have discovered that even though the

throughput of the ARMCI version is close to that of the MPI version, the code generated by the CAF compiler intro-

duces an overhead over the ARMCI version. Also, the multiple-buffer version of the microbenchmark gains over the
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Figure 14: Results for Sweep3D size 300x300x300 on an Itanium2 cluster with a Myrinet 2000 interconnect.

one-buffer version due to better asynchrony tolerance.

On the Itanium2 cluster with Myrinet 2000 interconnect, the MPI version performs comparably to the Sweep3D-

CAF-mb versions for the 50x50x50 problem size. The Sweep3D-CAF-mb version exceeds MPI performance by up

to 12% for the 150x150x150 and by up to 9% for 300x300x300 problem size. These excellent results are due to a

high degree of communication and computation overlap possible because the ARMCI library implements full support

for non-blocking PUTs and notify on the Myrinet 2000 interconnect. The microbenchmark results show that the
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Figure 15: Results for Sweep3D size 50x50x50 on an SGI Altix 3000.
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Figure 16: Results for Sweep3D size 150x150x150 on an SGI Altix 3000.
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Figure 17: Results for Sweep3D size 300x300x300 on an SGI Altix 3000.

multiple buffer version with non-blocking communication outperforms the other CAF versions because it allows good

asynchrony tolerance and pipelining of communication events. We noticed that MPI achieves superior performance

for small message sizes (up to 16KB); it is our understanding that the Myrinet-based implementation of MPI buffers

small message sizes on the sender, thus, in reality, sending larger messages limited by MPI’s internal buffer size.

The Sweep3D-CAF version requires notifys to be sent to the predecessors to indicate that the Phiib and

Phijb buffers are available for incoming data. To further reduce the number of notifys, we created a CAF version

that expanded the Phiib and Phijb buffers so that a separate buffer is used per each pair of plane and angle. This
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Figure 18: Results for blocking put microbenchmark on an Alpha cluster with a Quadrics Elan3 interconnect.
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Figure 19: Results for the blocking put microbenchmarks on an Itanium2 cluster with a Quadrics Elan4 interconnect.

enabled us to remove all the notifys to the predecessors. However, experiments performed on the Itanium2 cluster

with the Myrinet 2000 interconnect showed that the extra buffer memory led to 5-38% more L3 cache misses, resulting

in 5-13% runtime increase compared to the Sweep3D-CAF-mb version.

To summarize our findings for cluster-based architectures, there are three major sources of inefficiencies for CAF

codes compared to the equivalent MPI codes. First, source-to-source translation and CAF runtime library add more

instructions to the program causing some, usually minor, inefficiency. Second, there is a communication performance

difference between ARMCI and native MPI implementations: for the blocking communication patterns commonly
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Figure 20: Results for the blocking put microbenchmarks on an Itanium2 cluster with a Myrinet 2000 interconnect.
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Figure 21: Results for the blocking put microbenchmarks on an SGI Altix 3000.

used in Sweep3D, the ARMCI version of our microbenchmark performs slightly worse than the MPI version. Third,

ARMCI does not have full support for non-blocking PUTs and notify, implemented via a blocking PUT, for the

Quadrics interconnects, precluding potential overlap of computation and communication. We are working closely with

the ARMCI developers to provide a non-blocking implementation of notify.

On the SGI Altix 3000 machine, the Sweep3D-CAF-mb and Sweep3D-CAF-pa versions perform slightly worse

than the Sweep3D version for 50x50x50 problem size, slightly outperform the Sweep3D version for 150x150x150

problem size, and consistently outperform the Sweep3D version for 300x300x300 problem size by up to 10%. On
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this architecture, due to lack of hardware support for efficient non-blocking communication, ARMCI implements non-

blocking communication by using memory copy subroutines, which is equivalent to blocking communication. For

this reason, the execution times of Sweep3D-CAF-pa and Sweep3D-CAF-mb are almost indistinguishable. Although

ARMCI performs direct data movement, MPI may perform one or more extra copies. The Sweep3D-CAF-mb-fix

version demonstrates even higher performance due to more efficient local computation. The SGI recommended con-

figuration of the MPI library did not improve the performance of Sweep3D.

The SGI Altix 3000 provides hardware cache consistency with cache line granularity. For this reason, we measured

two versions of the microbenchmark: one that repeatedly sends data from the same memory location on the source

to the same memory location on the destination (thus, keeping the transmitted data in cache), and the other that at

every step transmits data from a different memory address, so that the data needs to be brought in cache for every

transmission. The first version is denoted “warm cache” in figure 21, while the second is denoted “cold cache”.

For the warm cache version, the results show that while the throughput for the CAF and ARMCI versions scales

with the message size, achieving values as high as 7000–8000 MB/second, the throughput of the MPI version is

limited to 600MB/s. For the cold cache version, the CAF versions outperform the MPI version by a factor of two for

messages smaller than 4KB and by 30% for messages larger than 4KB. For the Sweep3D application, we expect most

of transmitted data to be in cache prior to the transmission, so the “warm cache” version is a closer approximation of

the communication behavior of Sweep3D, which is one of the reasons the CAF versions outperform the MPI version

on the SGI Altix 3000.

6 Conclusions

In the quest to increase the productivity of parallel application developers, programming models based on one-sided

communication have emerged as appealing alternatives to MPI. To better understand the implications of such models

on program performance, we developed and studied several CAF implementations of Sweep3D. For each program

variant, we describe its implementation strategy and analyze its performance on three cluster architectures and a

hardware shared memory machine. Our results show that the CAF versions achieve performance comparable to that

of LANL’s original MPI version on the cluster-based architectures and outperform the MPI version by up to 10%

on the SGI Altix 3000. For the cluster-based architectures, we identified three major sources inefficiency in our

compiler-generated code for CAF; we plan to address each in the nearest future. On the SGI Altix 3000 architecture,

sophisticated CAF versions outperform the MPI version of Sweep3D because they are able to effectively exploit

hardware support for direct data transfers.
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In our experience, CAF’s one-sided communication model is easier to use than MPI for writing simple programs.

However, at present, developing carefully-tuned parallel codes in CAF seems as difficult as it is in MPI. While MPI

manages message buffering transparently, in CAF programs multi-version storage for communicated arrays and asso-

ciated synchronization must currently be managed at source code level. To increase programmer’s productivity, we are

planning to explore compiler and runtime support for transparently managing multi-version storage of communicated

arrays; this should improve asynchrony tolerance of CAF programs written in a natural one-sided communication style

by enabling better overlap of communication and computation.
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