
John Mellor-Crummey, Laksono Adhianto
Mark Krentel, Guohua Jin, William Scherer III,

 Chaoran Yang

Department of Computer Science
Rice University

2010 HPC Challenge Class II Submission:
Coarray Fortran 2.0

Center for Scalable Application Development Software

SC 2010

2

Coarray Fortran (CAF)

Explicitly-parallel extension of Fortran 95 (Numrich & Reid)

• Global address space SPMD parallel programming model
—one-sided communication

• Simple, two-level memory model for locality management
—local vs. remote memory

• Programmer has control over performance critical decisions
—data partitioning
—computation partitioning
—data movement
—synchronization

Emerging in Fortran 2008

3

Coarray Fortran 2.0 (CAF 2.0)

• Teams: process subsets, like MPI communicators
—formation using team_split (like MPI_Comm_split)
—collective communication (two-sided)
—barrier synchronization

• Coarrays: shared data allocated across processor subsets
—declaration: double precision :: a(:,:)[*]
—dynamic allocation: allocate(a(n,m)[@row_team])
—access: x(:,n+1) = x(:,0)[mod(team_rank()+1, team_size())]

• Latency tolerance
—hide: asynchronous copy, asynchronous collectives
—avoid: function shipping

• Synchronization
—event variables: point-to-point sync; async completion
—finish: SPMD construct inspired by X10

• Copointers: pointers to remote data

Our HPC Challenge Goal: Productivity

• Priorities, in order
—performance
—source code volume

• Productivity = performance / (lines of code)

• Implications
—EP STREAM Triad
– outlined a loop to assist compiler optimization

—Randomaccess
– used software routing for higher performance

—FFT
– blocked packing/unpacking loops for bitreversal (8x gain for packing kernel)

—HPL
– tuned code to make good use of the memory hierarchy

4

double precision, allocatable :: a(:)[*], b(:)[*], c(:)[*]

...

! each processor in the default team allocates their own array parts
allocate(a(local_n)[], b(local_n)[], c(local_n)[])

...

! perform the calculation repeatedly to get reliable timings
do round = 1, rounds
 do j = 1, rep
 call triad(a,b,c,local_n,scalar)
 end do
 call team_barrier() ! synchronous barrier across the default team
end do

...

! perform the calculation with top performance
! assembly code is identical to that for sequential Fortran
subroutine triad(a, b, c, n ,scalar)
 double precision :: a(n), b(n), c(n), scalar
 a = b + scalar * c ! EP triad as a Fortran 90 vector operation
end subroutine triad

EP STREAM Triad

5

2

1

 event, allocatable :: delivered(:)[*],received(:)[*] !(stage)
 integer(i8), allocatable :: fwd(:,:,:)[*] ! (#,in/out,stage)
 ...
 ! hypercube-based routing: each processor has 1024 updates
 do i = world_logsize-1, 0, -1 ! log P stages in a route
 ...
 call split(retain(:,last), ret_sizes(last), &
 retain(:,current), ret_sizes(current), &
 fwd(1:,out,i), fwd(0,out,i), bufsize, dist)

 if (i < world_logsize-1) then
 event_wait(delivered(i+1))
 call split(fwd(1:,in,i+1), fwd(0,in,i+1), &
 retain(:,current), ret_sizes(current), &
 fwd(1:,out,i), fwd(0,out,i), bufsize, dist)
 event_notify(received(i+1)[from]) ! signal buffer is empty
 endif

 count = fwd(0,out,i)
 event_wait(received(i)) ! ensure buffer is empty from last route
 fwd(0:count,in,i)[partner] = fwd(0:count,out,i) ! send to partner
 event_notify(delivered(i)[partner]) ! notify partner data is there
 ...
 end do

Randomaccess Software Routing

6

HPL

7

• Block-cyclic data distribution

• Team based collective operations along rows and columns
—synchronous max reduction down columns of processors
—asynchronous broadcast of panels to all processors

type(paneltype) :: panels(1:NUMPANELS)
 event, allocatable :: delivered(:)[*]
 ...
 do j = pp, PROBLEMSIZE - 1, BLKSIZE
 cp = mod(j / BLKSIZE, 2) + 1
 ...
 event_wait(delivered(3-cp))
 ...
 if (mycol == cproc) then
 ...
 if (ncol > 0) ... ! update part of the trailing matrix
 call fact(m, n, cp) ! factor the next panel
 ...
 call team_broadcast_async(panels(cp)%buff(1:ub), panels(cp)%info(8), &

 delivered(cp))
 ! update rest of the trailing matrix
 if (nn-ncol>0) call update(m, n, col, nn-ncol, 3 - cp)
 ...
 end do

FFT

• Radix 2 FFT implementation

• Block distribution of array “c” across all processors

• Computation
—permute elements: c = (/ c(bitreverse(i), i = 0, n-1 /)
– 3 parts: pack data for all-to-all; team collective all-to-all; unpack data locally

—FFT is log N stages
– first (log N - log P) stages are local
– remaining log P stages are non-local

 each processor has a partner; each partner does half the work
 partner is ready ⇒ fetch half its data using multiple asynchronous copies

 as the data arrives, perform your part of the computation
 return half of your results to your partner with asynchronous copies
 synchronize with partner to complete the stage

• Verification
—use same code to perform inverse FFT

8

Experimental Setup

• Coarray Fortran 2.0 by Rice University
—source to source compilation from CAF 2.0 to Fortran 90
– generated code compiled with Portland Group’s pgf90

—CAF 2.0 runtime system built upon GASNet (version 1.14.2)
—scalable implementation of teams, using O(log P) storage

• Experimental platform: Cray XT
—systems
– Franklin at NERSC

 2.3 GHz AMD “Budapest” quad-core Opteron, 2GB DDR2-800/core
– Jaguar at ORNL

 2.1 GHz AMD “Budapest” quad-core Opteron, 2GB DDR2-800/core
—network topology
– 3D Torus based on Seastar2 routers
– OS provides an arbitrary set of nodes to an application

9

CAF 2.0 HPCC Relative Parallel Efficiency

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

64 256 1024 4096

1

0.75

0.54

0.39

1.00

0.80

0.65

0.53

1.00
0.96 0.97 0.97

1.00

0.94

0.87

0.79

number of cores

re
la

tiv
e

pa
ra

lle
l e

ffi
ci

en
cy

EP STREAM Triad

HPL

FFT

Randomaccess

Productivity = Performance / SLOC

Performance (Cray XT4)

Source lines of code

11

HPC Challenge
Benchmark

Source Lines
of Code

Reference
SLOC

Randomaccess 409 787
EP STREAM Triad 58 329

Global HPL 786 8800
Global FFT 439 1130

Notes
• EP STREAM: 66% of

memory B/W peak
• Randomaccess: high

performance without
special-purpose runtime

• HPL: 49% of FP peak at @
4096 cores (uses dgemm)

of
cores

STREAM Triad�
(TByte/s)

RandomAccess*
(GUP/s)

Global HPL�
(TFlop/s)

Global FFT�
(GFlop/s)

64 0.14 0.08 0.36 3.66
256 0.54 0.24 1.36 11.7

1024 2.18 0.69 4.99 38.2
4096 8.73 2.01 18.3 125

HPC Challenge Benchmark

*Measured on Jaguar �Measured on Franklin

