
 Objectives

 Key Features

Coarray Fortran (CAF) 2.0
Department of Computer Science, Rice University, Houston, TX

Project URL: http://caf.rice.edu

Expressiveness Support irregular and adaptive applications; support construction of sophisticated parallel applications and parallel libraries
Scalability Scale to petascale architectures and beyond
Orthogonality Support complex concepts with minimal language extensions
Multithreading Exploit multicore and multi-threaded processors
Performance Deliver top performance: enable users to overlap communication latency with computation
Portability Support development of portable high performance programs
Interoperability Interoperate with legacy parallel computing models such as MPI, OpenMP, and CUDA

CAF 2.0 offers greater
expressiveness than the
coarray features in
Fortran 2008 yet it still
yields performance
comparable to that of MPI

Partitioned Global Address Space (PGAS) memory viewPartitioned Global Address Space (PGAS) memory view
Like Unified Parallel C (UPC) and Chapel, CAF 2.0 features a two-level partitioned view of memory in which data
is either local or remote. Unlike them, however, accesses that may touch remote memory are always explicitly
flagged with square brackets.

integer :: A(1:50)[*] ! declares coarray A accessible to all image processes
integer :: B(1:40) ! declares local array B, not accessible to other image process

Array allocation in CAF 2.0:
integer, allocatable :: C(:)[*] ! declares an allocatable coarray
allocate(C(1:100)[@some_team]) ! allocates coarray C in members of some_team
 allocate(D(1:100)[]) ! allocates coarray C in members of the default team

Like Unified Parallel C (UPC) and Chapel, CAF 2.0 features a two-level partitioned view of memory in which data
is either local or remote. Unlike them, however, accesses that may touch remote memory are always explicitly
flagged with square brackets.

integer :: A(1:50)[*] ! declares coarray A accessible to all image processes
integer :: B(1:40) ! declares local array B, not accessible to other image process

Array allocation in CAF 2.0:
integer, allocatable :: C(:)[*] ! declares an allocatable coarray
allocate(C(1:100)[@some_team]) ! allocates coarray C in members of some_team
 allocate(D(1:100)[]) ! allocates coarray C in members of the default team

 Process subsets: Teams Process subsets: Teams

team: ordered sequence of process images
• Dynamically create arbitrary subsets of any team
• Support coupled applications with multiple teams (e.g., separate teams for ocean and atmosphere)
• Allow multiple overlapping views (e.g., row and column teams overlaid on a grid of images)
• Index images in a team using team-relative rank r ∈ [0..team_size(t0) - 1] with team t0

Accessing a coarray from a specific team:
• b(1:100)[1]: accesses elements in coarray b on image 1 of the current default team.
• b(1:100)[1@myteam]: accesses elements in coarray b on image 1 on team myteam.

Team intrinsics and statements:
• team_world: predefined team that consists of all images (equivalent to MPI_COMM_WORLD).
• team_default: the default team for the current scope (initially team_world).
• team_rank(myteam): returns the team-relative rank of a given image process.
• team_size(myteam): returns the number of images in a given team.
• team_split(parent_team, color, key, new_team): forms new teams as subsets of an existing

 one; equivalent to MPI_COMM_SPLIT.
• with team myteam … end with team myteam: sets the default team to myteam within its scope.

team: ordered sequence of process images
• Dynamically create arbitrary subsets of any team
• Support coupled applications with multiple teams (e.g., separate teams for ocean and atmosphere)
• Allow multiple overlapping views (e.g., row and column teams overlaid on a grid of images)
• Index images in a team using team-relative rank r ∈ [0..team_size(t0) - 1] with team t0

Accessing a coarray from a specific team:
• b(1:100)[1]: accesses elements in coarray b on image 1 of the current default team.
• b(1:100)[1@myteam]: accesses elements in coarray b on image 1 on team myteam.

Team intrinsics and statements:
• team_world: predefined team that consists of all images (equivalent to MPI_COMM_WORLD).
• team_default: the default team for the current scope (initially team_world).
• team_rank(myteam): returns the team-relative rank of a given image process.
• team_size(myteam): returns the number of images in a given team.
• team_split(parent_team, color, key, new_team): forms new teams as subsets of an existing

 one; equivalent to MPI_COMM_SPLIT.
• with team myteam … end with team myteam: sets the default team to myteam within its scope.

A rich set of collective operationsA rich set of collective operations
Portable, high performance synchronization and communication among images within a team

Two-sided design for collectives:
• Requires only O(1) memory where one-sided would require O(p) with p participating processes.
• Receivers can manage flow control by specifying their willingness to participate.

All-to-one communication: all processes contribute to the result, but only one process receives it
• team_reduce
• team_gather

One-to-all communication: one process contributes the result; all processes receive it
• team_broadcast
• team_scatter

All-to-all communication: all processes contribute to the result; all processes receive it
• team_allreduce, team_allgather, team_alltoall, team_alltoallv, team_barrier
• team_sort, team_scan, team_shift

Portable, high performance synchronization and communication among images within a team

Two-sided design for collectives:
• Requires only O(1) memory where one-sided would require O(p) with p participating processes.
• Receivers can manage flow control by specifying their willingness to participate.

All-to-one communication: all processes contribute to the result, but only one process receives it
• team_reduce
• team_gather

One-to-all communication: one process contributes the result; all processes receive it
• team_broadcast
• team_scatter

All-to-all communication: all processes contribute to the result; all processes receive it
• team_allreduce, team_allgather, team_alltoall, team_alltoallv, team_barrier
• team_sort, team_scan, team_shift

Other CAF 2.0 featuresOther CAF 2.0 features
• Topologies (cartesian, graph)
• Multithreading: Fortran 2008 do concurrent

statement implemented via work stealing
• Function shipping: synchronous invocation of

remote functions using a spawn statement

• Synchronization: block-structured finish … end
finish construct as in X10

• Mutual exclusion: locks, critical sections, and locksets
• Memory consistency: cofence for local completion of

operations and asynchronous events

P0

A(1:50)[0]

B(1:40)

P1

A(1:50)[1]

B(1:40)

A(1:50)[3]

B(1:40)

A(1:50)[2]

B(1:40)

P2 P3

Global view

Local view

Development of CAF 2.0 is supported by the Department of Energy’s Office of Science under cooperative agreements
DE-FC02-07ER25800 and DE-FC02-06ER25754.

The Rice CAF 2.0 compiler uses the Rose compiler (Lawrence Livermore National Lab), the Open Fortran Parser
(Los Alamos National Lab) and the GASNet communications library (University of California Berkeley).

Events for point-to-point synchronization and asynchrony
event: synchronization object for anonymous pairwise coordination

• Safe synchronization space: can allocate as many events as desired
• event_init: event initialization
• event_notify: nonblocking signal to an event; a pairwise fence between sender and target image
• event_wait: blocking wait for notification of an event
• event_trywait: nonblocking check to see if an event has been signaled

Asynchrony support
• Completion of asynchronous operations managed two ways:

➡ Explicit model: notify an event upon completion
➡ Implicit model: both cofence and finish block “round up” outstanding operations

• Asynchronous collectives signal completion either explicitly or implicitly

• Predicated asynchronous copy overlaps computation and communication
➡ copy_async(dest, src, cr, sr, dr)
➡ cr (copy ready; optional): an event indicating that the data may now be copied from src to dest
➡ sr (source ready; optional): an event indicating that the source data may be safely overwritten
➡ dr (destination ready; omitted to use implicit asynchrony): an event indicating that the copy has completed

Global pointers: copointer and cotarget
• copointer: support irregular data decompositions, distributed linked data structures, parallel model coupling
• cotarget: marks entities that may be targeted by a copointer.
• =>: same symbol is used for pointer and copointer assignment

 integer, dimension(:), allocatable, cotarget :: A[*]
 integer, dimension(:), copointer :: p, q

 p => A ! copointer p points to coarray A
 q => A[2] ! copointer q points to portion of coarray A on image 2
 p(5) = 42 ! assign to local data using copointer p
 q(5)[] = 42 ! assign to remote data on image 2 using copointer q
 p => q ! reassign copointer p with a copy of copointer q

CAF 2.0 halo exchange in the Parallel Ocean Program (POP)
Initialize copointers
do n = 1, size(boundary%out)
 face => boundary%out(n)
 p = face%partner
 face%local_ptr => A(
 face%src_bounds(1,1): face%src_bounds(2,1),&
 face%src_bounds(1,2): face%src_bounds(2,2),&
 face%src_block_id)
 face%remote_ptr => A(
 face%dest_bounds(1,1): face%dest_bounds(2,1),&
 face%dest_bounds(1,2): face%dest_bounds(2,2),&
 face%dest_block_id)[p]
 end do

Replace block-synchronous updates with one-sided communication
 ! notify my partners that my block is ready by posting an event for each ready face
 do n = 1, size(boundary%in)
 event_notify(boundary%in(n)%event_dest_ready[])
 end do

 ! for each face, initiate a data copy when the destination is ready and signal when complete
 do n = 1, size(boundary%out)
 face => boundary%out(n)
 copy_async(face%remote_ptr[], face%local_ptr, face%event_dest_ready &
 face%event_src_done, face%event_dest_done[])
 end do

 ! wait for local completion of copies initiated locally
 do n = 1, size(boundary%in)
 event_wait(boundary%out(n)%event_src_done)
 end do

 ! perform local updates
 …

 ! wait for all incoming faces to arrive from partners
 do n = 1, size(boundary%in)
 event_wait(boundary%in(n)%event_dest_done)
 end do

Ocean

Atmosphere

Surface

row column mgrid

G2

G1

G

Contributors
• John Mellor-Crummey (PI)
• Laksono Adhianto
• Guohua Jin

• Mark Krentel
• Karthik Murthy
• Dung Nguyen

• William N. Scherer III
• Scott Warren
• Chaoran Yang

CAF 2.0
Features

Fortran
2008

P0 P1

face%local_ptr
face%remote_ptr[]

1
2

3

Image Credit: UCAR

3

1

2

Friday, November 4, 2011

http://caf.rice.edu
http://caf.rice.edu

