
 Objectives

 Key Features

Coarray Fortran (CAF) 2.0
Department of Computer Science, Rice University, Houston, TX

http://caf.rice.edu

Expressiveness Support irregular and adaptive applications; support construction of sophisticated parallel applications and parallel libraries
Scalability Scale to petascale architectures
Orthogonality Provide a powerful model in the form of a small set of composable features
Multithreading Exploit multicore processors
Performance Deliver top performance: enable users to avoid exposing or overlap communication latency
Portability Support development of portable high performance programs
Interoperability Interoperate with legacy parallel computing models such as MPI and OpenMP

Participation

team: ordered sequence of process images
• Create arbitrary subsets of any team as necessary
• Support coupled applications with multiple teams (e.g. separate teams for ocean and atmosphere)
• Allow multiple overlapping views (e.g., row and column teams overlaid on a grid of images)
• Index images in a team using team-relative rank r ∈ {0..team_size(t) - 1} with team t

Accessing a coarray from a specific team:
• b(1:100)[1]: accessing elements in coarray b of image 1 within the current default team
• b(1:100)[1@a_team]: accessing elements in coarray b of image 1 within team a_team

Some team intrinsics and statements:
• team_world: a predefined team that consists of all process images (analogous to MPI_COMM_WORLD)
• team_default: the team in the current scope (by default is team_world)
• team_rank([a_team]): returns the team-relative rank of a given image process (team_default if not specified)
• team_size([a_team]): returns the number of images in a given team (team_default if not specified)
• team_split(parent_team, color, key, new_team): forming a new team from an existing one
• with team a_team ... end with team [a_team]: changing the default team to a_team within its scope

Organization

Topology:
• Augments a team with a logical structure for communication
• More expressive than multiple codimensions
• Support for cartesian and graph virtual topologies

Creation:
• Cartesian: topology_cartesian(/e1,e2, .../) ! ei are the sizes in the i-th dimension
• Graph: topology_graph(n, e) ! n is the number of nodes, e is the number of edge classes

Modification (graph topology only):
• graph_neighbor_add(g, e, n, nv)
• graph_neighbor_delete(g, e, n, nv)

Binding:
• topology_bind(team, topology)

Accessing coarrays using a cartesian topology:
• array(:) [(i1, i2, ..., in)@ocean] ! absolute index w.r.t. team ocean
• array(:) [+(i1, i2, ..., in)@ocean] ! relative index w.r.t. self in team ocean
• array(:) [i1, i2, ..., in] ! w.r.t. enclosing default team

Accessing kth neighbor of image i in edge class e using a graph topology
• array(:) [(e,i,k)@ocean] ! w.r.t. team ocean
• array(:) [e,i,k] ! w.r.t. enclosing default team

Mutual exclusion

lock: support fine grain mutual exclusion
• lock_acquire(l) ! acquire lock l
• lock_release(l) ! release lock l

lockset: a set of locks help avoid deadlock when acquiring multiple locks by transparently acquiring them in an appropriate order
• lockset_acquire(ls) ! acquire lockset ls
• lockset_release(ls) ! release lockset ls

critical([lock]): a structured construct for mutual exclusion
• critical(l) ... end critical ! block protected by lock l

Coordination

event: synchronization object for anonymous pairwise coordination
• Safe synchronization space: can allocate as many events as desired
• event_init: event initialization
• event_notify: a non-blocking signal to an event; serves as a pairwise fence between the sender and target image
• event_wait: blocking wait for notification on an event
• event_trywait: non-blocking wait for notification on an event
• event_getid: retrieve an event ID

eventset: multi-events synchronization
• Set manipulation: eventset_init, eventset_add, eventset_addarray, eventset_remove, eventset_destroy
• Events manipulation: eventset_waitany, eventset_waitany_fair, eventset_waitall, eventset_notifyall

Collective
operations

Support development of portable high performance programs synchronization and communication among a team of images

Two-sided collectives
• Each process image in a team calls the collective operation
• The two-sided style enables each process image to specify where the result will be received

All-to-one communication:
• team_reduce, team_gather

One-to-all communication:
• team_broadcast, team_scatter

All-to-all communication:
• team_allreduce, team_allgather, team_alltoall, team_barrier, team_sort, team_scan, team_shift

Asynchrony

Predicated asynchronous copy: optionally wait for an event before starting the copy; optionally post an event upon completion
• copy_async(var_dest, var_src [, event_after] [, event_before])

Two-sided asynchronous collective operations: two-sided design facilitates flow control
• team_barrier_async, team_broadcast_async, team_gather_async, team_allgather_async,
team_reduce_async, team_allreduce_async, team_alltoall_async

Multithreading &
function
shipping

spawn: create local or remote asynchronous threads by calling a procedure
• Local threads can exploit multicore parallelism
• Remote threads can be created to avoid latency when manipulating remote data structures

finish [t]: terminally strict synchronization for (nested) threads spawned across team t (or the default team)
• Orthogonal to procedures (like X10 and unlike Cilk)

Remote pointers
copointer: an attribute to associate with shared data that may be remote

• Support for remote manipulation of data structures
• imageof: get the target image for a copointer

Expressiveness

Pe
rf

or
m

an
ce

Autopar

CAF

MPICAF 2.0

Coarray Fortran (CAF) 2.0
supports higher expressiveness
than CAF features in Fortran
2008, with performance
comparable to MPI

HPF

Memory viewMemory viewMemory view

"First, consider work distribution. A single program is replicated a fixed number of times, each
replication having its own set of data objects. Each replication of the program is called an image"

 (co-array.org)

 integer :: A(1:50)[*] ! declare coarray A , which is accessible by all process images
 integer :: B(1:40) ! declare a local array B, which is inaccessible to other process images

Array allocation in CAF 2.0:
integer, allocatable :: C(:)[*], D(:)[*] ! declare allocatable coarrays
allocate(C(1:100)[@ocean]) ! allocate a 100-element coarray C within team ocean
 allocate(D(1:100)[]) ! allocate a 100-element coarray D within the default team
 ...
C[1@ocean] = D[2] ! copy coarrray D from image 2 within the default team to
 ! coarray C from image 1 within team ocean

"First, consider work distribution. A single program is replicated a fixed number of times, each
replication having its own set of data objects. Each replication of the program is called an image"

 (co-array.org)

 integer :: A(1:50)[*] ! declare coarray A , which is accessible by all process images
 integer :: B(1:40) ! declare a local array B, which is inaccessible to other process images

Array allocation in CAF 2.0:
integer, allocatable :: C(:)[*], D(:)[*] ! declare allocatable coarrays
allocate(C(1:100)[@ocean]) ! allocate a 100-element coarray C within team ocean
 allocate(D(1:100)[]) ! allocate a 100-element coarray D within the default team
 ...
C[1@ocean] = D[2] ! copy coarrray D from image 2 within the default team to
 ! coarray C from image 1 within team ocean

"First, consider work distribution. A single program is replicated a fixed number of times, each
replication having its own set of data objects. Each replication of the program is called an image"

 (co-array.org)

 integer :: A(1:50)[*] ! declare coarray A , which is accessible by all process images
 integer :: B(1:40) ! declare a local array B, which is inaccessible to other process images

Array allocation in CAF 2.0:
integer, allocatable :: C(:)[*], D(:)[*] ! declare allocatable coarrays
allocate(C(1:100)[@ocean]) ! allocate a 100-element coarray C within team ocean
 allocate(D(1:100)[]) ! allocate a 100-element coarray D within the default team
 ...
C[1@ocean] = D[2] ! copy coarrray D from image 2 within the default team to
 ! coarray C from image 1 within team ocean

Memory modelMemory modelMemory model

By default, CAF 2.0 programs are sequentially consistent. One may obtain relaxed semantics for a section
of code by marking it with '!$caf consistency(relaxed=on/off)'

Principles guiding the CAF 2.0 memory model:
Sequential consistency is provided by default so that it is easy to reason about possible executions

• 'Delay Set Analysis' [Shasha, Snir TOPLAS88] can make sequential consistency cheaper at runtime
In sections of code marked for relaxed consistency:

• No program order guarantee between coarray reads and writes
• Ordering can be enforced via ‘cofence’ or synchronization primitives

cofence(allow_downward=PUT|GET, allow_upward=PUT|GET), based on SPARC V9 MEMBAR:
• Acts as a memory barrier for synchronous coarray operations, except as relaxed by arguments
• Acts as a release barrier for implicit asynchronous operations, guaranteeing their completion
• Provides no guarantee that explicit asynchronous operations have completed

event/eventset notify/wait and copy_async operations always act as release barriers

By default, CAF 2.0 programs are sequentially consistent. One may obtain relaxed semantics for a section
of code by marking it with '!$caf consistency(relaxed=on/off)'

Principles guiding the CAF 2.0 memory model:
Sequential consistency is provided by default so that it is easy to reason about possible executions

• 'Delay Set Analysis' [Shasha, Snir TOPLAS88] can make sequential consistency cheaper at runtime
In sections of code marked for relaxed consistency:

• No program order guarantee between coarray reads and writes
• Ordering can be enforced via ‘cofence’ or synchronization primitives

cofence(allow_downward=PUT|GET, allow_upward=PUT|GET), based on SPARC V9 MEMBAR:
• Acts as a memory barrier for synchronous coarray operations, except as relaxed by arguments
• Acts as a release barrier for implicit asynchronous operations, guaranteeing their completion
• Provides no guarantee that explicit asynchronous operations have completed

event/eventset notify/wait and copy_async operations always act as release barriers

By default, CAF 2.0 programs are sequentially consistent. One may obtain relaxed semantics for a section
of code by marking it with '!$caf consistency(relaxed=on/off)'

Principles guiding the CAF 2.0 memory model:
Sequential consistency is provided by default so that it is easy to reason about possible executions

• 'Delay Set Analysis' [Shasha, Snir TOPLAS88] can make sequential consistency cheaper at runtime
In sections of code marked for relaxed consistency:

• No program order guarantee between coarray reads and writes
• Ordering can be enforced via ‘cofence’ or synchronization primitives

cofence(allow_downward=PUT|GET, allow_upward=PUT|GET), based on SPARC V9 MEMBAR:
• Acts as a memory barrier for synchronous coarray operations, except as relaxed by arguments
• Acts as a release barrier for implicit asynchronous operations, guaranteeing their completion
• Provides no guarantee that explicit asynchronous operations have completed

event/eventset notify/wait and copy_async operations always act as release barriers

Example 1: Team and Coarray allocationExample 1: Team and Coarray allocationExample 1: Team and Coarray allocation
team :: row_team, col_team

rank = team_rank() ! get the relative rank
size = team_size() ! get the number of images
p = rank / 4 ! determine row position
q = mod(rank, 4) ! determine column position

! split into rows and columns
team_split(team_world, p, rank, row_team)
team_split(team_world, q, rank, col_team)

allocate(rowdata(1000000)[@row_team]) ! allocate across process images within my row_team
allocate(coldata(1000000)[@col_team]) ! allocate across process images within my col_team

with team row_team ! row_team is the default team
 ...
 rank_row = team_rank() ! get the relative rank within row_team
 size_row = team_size() ! get the number of images within row_team
 buffer = rowdata[mod(rank_row-1, size_row)] ! get the data from the “left”
end with team

team :: row_team, col_team

rank = team_rank() ! get the relative rank
size = team_size() ! get the number of images
p = rank / 4 ! determine row position
q = mod(rank, 4) ! determine column position

! split into rows and columns
team_split(team_world, p, rank, row_team)
team_split(team_world, q, rank, col_team)

allocate(rowdata(1000000)[@row_team]) ! allocate across process images within my row_team
allocate(coldata(1000000)[@col_team]) ! allocate across process images within my col_team

with team row_team ! row_team is the default team
 ...
 rank_row = team_rank() ! get the relative rank within row_team
 size_row = team_size() ! get the number of images within row_team
 buffer = rowdata[mod(rank_row-1, size_row)] ! get the data from the “left”
end with team

team :: row_team, col_team

rank = team_rank() ! get the relative rank
size = team_size() ! get the number of images
p = rank / 4 ! determine row position
q = mod(rank, 4) ! determine column position

! split into rows and columns
team_split(team_world, p, rank, row_team)
team_split(team_world, q, rank, col_team)

allocate(rowdata(1000000)[@row_team]) ! allocate across process images within my row_team
allocate(coldata(1000000)[@col_team]) ! allocate across process images within my col_team

with team row_team ! row_team is the default team
 ...
 rank_row = team_rank() ! get the relative rank within row_team
 size_row = team_size() ! get the number of images within row_team
 buffer = rowdata[mod(rank_row-1, size_row)] ! get the data from the “left”
end with team

Example 2: Function shippingExample 2: Function shippingExample 2: Function shipping

subroutine update_table(table, index, value)
 integer :: table(:)[*]
 ! update local table
 table(index) = value
end subroutine

subroutine apply_updates(table, buffer)
 integer :: buffer(:), table(:)[*]
 finish
 do i=1,size
 buffer(i) = ...
 ! ask remote process to update an element in its table with a given value
 spawn update_table(table, index, buffer(i))[remote_proc]
 enddo
 end finish
end subroutine

subroutine update_table(table, index, value)
 integer :: table(:)[*]
 ! update local table
 table(index) = value
end subroutine

subroutine apply_updates(table, buffer)
 integer :: buffer(:), table(:)[*]
 finish
 do i=1,size
 buffer(i) = ...
 ! ask remote process to update an element in its table with a given value
 spawn update_table(table, index, buffer(i))[remote_proc]
 enddo
 end finish
end subroutine

subroutine update_table(table, index, value)
 integer :: table(:)[*]
 ! update local table
 table(index) = value
end subroutine

subroutine apply_updates(table, buffer)
 integer :: buffer(:), table(:)[*]
 finish
 do i=1,size
 buffer(i) = ...
 ! ask remote process to update an element in its table with a given value
 spawn update_table(table, index, buffer(i))[remote_proc]
 enddo
 end finish
end subroutine

ContributorsContributorsContributors
• John Mellor-Crummey (PI)
• Laksono Adhianto
• Guohua Jin

• Karthik Murthy
• Dung Nguyen
• Mark Krentel

• William N. Scherer III
• Scott K. Warren
• Chaoran Yang

0 1 2 3

210

4

8

12

5

9

13

6

10

14

7

11

15

0

1

2

3

3

OpenMP

P0

A(1:50)[0]

B(1:40)

P1

A(1:50)[1]

B(1:40)

A(1:50)[3]

B(1:40)

A(1:50)[2]

B(1:40)

P2 P3

Global view

Local view

Development of CAF 2.0 is supported by the Department of Energy’s
Office of Science under cooperative agreements

DE-FC02-07ER25800 and DE-FC02- 06ER25754

The spawn shown below is semantically equivalent to the
copy_async shown below:
copy_async(table(index)[remote_proc],buffer(i))

Thursday, November 11, 2010

http://caf.rice.edu
http://caf.rice.edu

